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This article studies the problem of prominent streak discovery in sequence data. Given a sequence of values,
a prominent streak is a long consecutive subsequence consisting of only large (small) values, such as consecu-
tive games of outstanding performance in sports, consecutive hours of heavy network traffic, and consecutive
days of frequent mentioning of a person in social media. Prominent streak discovery provides insightful data
patterns for data analysis in many real-world applications and is an enabling technique for computational
journalism. Given its real-world usefulness and complexity, the research on prominent streaks in sequence
data opens a spectrum of challenging problems.

A baseline approach to finding prominent streaks is a quadratic algorithm that exhaustively enumerates
all possible streaks and performs pairwise streak dominance comparison. For more efficient methods, we
make the observation that prominent streaks are in fact skyline points in two dimensions—streak interval
length and minimum value in the interval. Our solution thus hinges on the idea to separate the two steps
in prominent streak discovery: candidate streak generation and skyline operation over candidate streaks.
For candidate generation, we propose the concept of local prominent streak (LPS). We prove that prominent
streaks are a subset of LPSs and the number of LPSs is less than the length of a data sequence, in comparison
with the quadratic number of candidates produced by the brute-force baseline method. We develop efficient
algorithms based on the concept of LPS. The nonlinear local prominent streak (NLPS)-based method con-
siders a superset of LPSs as candidates, and the linear local prominent streak (LLPS)-based method further
guarantees to consider only LPSs. The proposed properties and algorithms are also extended for discovering
general top-k, multisequence, and multidimensional prominent streaks. The results of experiments using
multiple real datasets verified the effectiveness of the proposed methods and showed orders of magnitude
performance improvement against the baseline method.
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1. INTRODUCTION

This article presents the problem of prominent streak discovery in sequence data. A
piece of sequence data is a series of values or events. This includes time series data, in
which the data values or events are often measured at equal time intervals. Sequence
and time series data is produced and accumulated in a rich variety of applications. Ex-
amples include stock quotes, sports statistics, temperature measurement, Web usage
logs, network traffic logs, Web clickstream, customer transaction sequence, and social
media statistics. Given a sequence of values, a prominent streak is a long consecu-
tive subsequence consisting of only large (small) values. Examples of such prominent
streaks include consecutive days of high temperature, consecutive trading days of large
stock price oscillation, consecutive games of outstanding performance in professional
sports, consecutive hours of high volume of TCP traffic, consecutive weeks of high flu
activity, consecutive days of frequent mentioning of a person in social media, and so
on.

It is insightful to investigate prominent streaks because they intuitively and suc-
cinctly capture extraordinary subsequences of data. Consider several example applica-
tion scenarios: (1) business analysts may be interested in prominent streaks in social
media usage logs (e.g. streaks of re-tweeting a tweet, streaks of hashtagging a topic);
(2) a security auditing may be performed after a streak of excessive login attempts
is detected; (3) a cooling system can be started when a streak of days with high tem-
perature has been discovered; and (4) for disease outbreak detection, we can identify
prominent streaks in time series of aggregated disease case counts. Previous works
on outbreak detection focus on conventional data mining tasks such as clustering and
regression [Wong 2004]. The concept of prominent streaks has not yet been studied.

Prominent streak discovery can be particularly useful in helping journalists to iden-
tify newsworthy stories when data sequences evolve, investigators to find suspicious
phenomena, and news anchors and sports commentators to bring out attention-seizing
factual statements. Therefore, it will be a key enabling technique for computational
journalism [Cohen et al. 2011]. In fact, we witness the mentioning of prominent streaks
in many real-world news articles:

—This month the Chinese capital has experienced 10 days with a maximum temper-
ature in around 35 degrees Celsius—the most for the month of July in a decade.
(http://www.chinadaily.com.cn/china/2010-07/27/content_11055675.htm)

—The Nikkei 225 closed below 10000 for the 12th consecutive week, the longest
such streak since June 2009. (http://www.bloomberg.com/news/2010-08-06/japanese-
stocks-fall-for-second-day-this-week-on-u-s-jobless-claims-yen.html)

—He (LeBron James) scored 35 or more points in nine consecutive games and joined
Michael Jordan and Kobe Bryant as the only players since 1970 to accomplish the
feat. (http://www.nba.com/cavaliers/news/lbj_mvp_candidate_060419.html)

—Only player in NBA history to average at least 20 points, 10 rebounds and 5 as-
sists per game for 6 consecutive seasons. (Kevin Garnett) (http://en.wikipedia.org/
wiki/Kevin_Garnett)

The examples indicate that general prominent streaks can have a variety of con-
straints. A streak can be on multiple dimensions (e.g., 〈point, rebound, assist〉), its
significance can be with regard to a certain period (e.g., “since June 2009”) or a certain
comparison group (e.g., “the month of July”), and we may be interested in not only the
most prominent streaks but also the top-k most prominent ones (e.g., “LeBron James
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Fig. 1. A data sequence and its prominent streaks.

joined Michael Jordan and Kobe Bryant as the only players,” which means that LeBron
James’s scoring streak mentioned earlier is among the top-3 streaks.)

Given its real-world usefulness and variety, the research on prominent streaks in se-
quence data opens a spectrum of challenging problems. In an earlier work [Jiang et al.
2011], we proposed the concept of prominent streak and studied the problem of discover-
ing the simplest kind of prominent streaks—that is, those without the aforementioned
constraints. In this article, we extend the work to discovering general multidimen-
sional and top-k prominent streaks from multiple sequences, which shall substantially
broaden the applicability of our study in real-world scenarios, as evidenced by the
stories from news articles presented earlier.

1.1. Problem Definition

Definition 1 (Streak and Prominent Streak). Given an n-element sequence P =
(p1, . . . , pn), a streak is an interval-value pair 〈[l, r], v〉, where 1 ≤ l ≤ r ≤ n and v =
minl≤i≤r pi.

Consider two streaks, s1 = 〈[l1, r1], v1〉 and s2 = 〈[l2, r2], v2〉. We say that s1 dominates
s2, denoted by s1 � s2 or s2 ≺ s1, if r1 − l1 ≥ r2 − l2 and v1 > v2, or r1 − l1 > r2 − l2 and
v1 ≥ v2. For example, 〈[1, 2], 3〉 ≺ 〈[4, 7], 6〉 and 〈[1, 2], 3〉 ≺ 〈[3, 4], 5〉, whereas 〈[1, 2], 3〉
and 〈[7, 8], 3〉 do not dominate each other.

With regard to P = (p1, . . . , pn), the set of all possible streaks is denoted by SP . A
streak s ∈ SP is a prominent streak if it is not dominated by any streak in SP—that is,
�s′ such that s′ ∈ SP and s′ � s. The set of all prominent streaks in P is denoted by PSP .

Problem Statement: The prominent streak discovery problem is to, given a sequence
P, produce PSP .

Figure 1 is our running example that shows the assists made by an NBA player in
10 consecutive games P = (3, 1, 7, 7, 2, 5, 4, 6, 7, 3). There are five prominent streaks in
P– 〈[1, 10], 1〉, 〈[3, 10], 2〉, 〈[6, 10], 3〉, 〈[6, 9], 4〉, 〈[3, 4], 7〉. Each streak is represented by
a horizontal segment, which crosses the minimal value points in the streak and runs
from the left end to the right end of the corresponding interval. For instance, 〈[6, 9], 4〉
is a prominent streak of minimal value 4, whose interval is from p6 to p9. It captures
the fact that the NBA player made at least four assists in four consecutive games (game
6 to game 9). The whole data sequence, 〈[1, 10], 1〉, is also a trivial prominent streak
because no other streak can possibly dominate the sequence itself. The streak 〈[8, 9], 6〉
is an instance of nonprominent streaks because it is dominated by 〈[3, 4], 7〉.

Definition 1 focuses on the simplest type of prominent streaks. The concept of
prominent streak can be extended in several ways. First, we may be interested in top-k
prominent streaks that are dominated by less than k other streaks. Second, we may
need to compare streaks from not only the same sequence but also multiple different
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sequences (e.g., sequences corresponding to different NBA players, cities, stocks).
Third, the data points in a sequence can be multidimensional, leading to the pursuit
of multidimensional prominent streaks. We have seen examples of all such general
prominent streaks at the beginning of Section 1, and their combinations naturally
exist. The focus of our following discussion will first be on the simplest prominent
streak discovery problem. In Section 5, we discuss how to discover general prominent
streaks.

Definition 1 and the problem statement focus on finding streaks of large values. To
find streaks of small values (e.g., a stock index below 10,000 for 12 consecutive weeks,
described in the aforementioned second news article), two changes should be made.
First, a streak should be captured by its interval length and the maximal value (instead
of the minimal value) in the interval—that is, v = maxl≤i≤r pi. Second, the dominance
relation between streaks should be defined to prefer smaller values. More specifically,
s1 dominates s2 if r1 − l1 ≥ r2 − l2 and v1 < v2 (instead of v1 > v2), or r1 − l1 > r2 − l2 and
v1 ≤ v2 (instead of v1 ≥ v2). Given that the new definition would be exactly symmetric
to Definition 1, finding streaks of large and small values become the same problem.
Hence, we only consider finding streaks of large values in the rest of this article.

1.2. Overview of the Solution

A brute-force method for discovering prominent streaks is not appealing. One can
enumerate all possible streaks and decide if each streak is prominent by comparing it
with every other streak. Given a sequence P with length n, there are |SP | = (n+1

2

)
streaks

in total. Thus, the number of pairwise streak comparison would be
(|SP |

2

) = n4+2n3−n2−2n
8 .

Given a sequence of length 10,000, the brute-force approach enumerates 108 streaks
and performs 1016 comparisons. Many real-world sequences can be quite long. The
sequence of daily closing prices for a stock with 40-year history has about 10,000
values. A 1-year usage log for a Web site has 8,760 values at hourly intervals.

Prominent streaks are in fact skyline points [Börzsönyi et al. 2001] in two
dimensions—streak interval length (r − l) and minimum value in the interval (v).
A streak is a prominent streak (skyline point) if it is not dominated by any point—that
is, there exists no streak that has both longer interval and greater minimum value.

Based on this observation, our solution hinges upon the idea to separate the two steps
of prominent streak discovery: candidate streak generation and skyline operation over
candidate streaks. In candidate generation, we prune a large portion of nonprominent
streaks without exhaustively considering all possible streaks. For skyline operation, we
apply efficient algorithms from the rich literature on this topic [Börzsönyi et al. 2001;
Tan et al. 2001; Kossmann et al. 2002; Papadias et al. 2005]. The effectiveness of prun-
ing in the first step is critical to overall performance, because execution time of skyline
algorithms increases superlinearly by the number of candidate points [Börzsönyi et al.
2001].

Candidate Streak Generation
We considered three methods with increasing pruning power in candidate generation:
a baseline method, a nonlinear local prominent streak (NLPS)-based method, and a
linear local prominent streak (LLPS)-based method. The baseline method exhaustively
enumerates SP , all possible streaks in a sequence P, by a nested loop over the values in
P. Thus, the baseline method does not have pruning power. The sketch of this method
is in Algorithm 1. It produces quadratic ( n(n+1)

2 ) candidate streaks. We then propose
the concept of local prominent streak (LPS) for substantially reducing the number of
candidate streaks (Section 3). The intuition is, given a prominent streak s, that there
cannot be a supersequence of s with greater or equal minimal value. In other words, s
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ALGORITHM 1: Baseline Method
Input: Data sequence P = (p1, . . . , pn)
Output: Prominent streaks skyline

1 skyline ← empty
2 for r = 1 to n do
3 min value ← ∞
4 for l = r downto 1 do
5 min value ← min(pl, min value)
6 s ← 〈[l, r], min value〉 // candidate streak
7 skyline ← skyline update(skyline, s)

ALGORITHM 2: Update Dynamic Skyline (skyline update)
Input: Dynamic skyline skyline, new candidate streak s = 〈[l, r], v〉
Output: Updated dynamic skyline skyline

1 Find the largest i in skyline such that vi ≤ v
2 if s ≺ si or s ≺ si+1 then
3 return skyline
4 while s � si and i > 0 do
5 Delete si from skyline
6 i ← i − 1
7 Insert s into skyline
8 return skyline

must be locally prominent as well. Hence, we only need to consider LPSs as candidates.
The algorithm sequentially scans the data sequence and maintains possible LPSs. The
NLPS-based method finds a superset of LPSs as candidates, whereas the LLPS-based
method guarantees to find only LPSs.

Skyline Operation
To couple candidate streak generation with skyline operation, Algorithm 1 maintains
a dynamic skyline and updates it whenever a new candidate streak is produced. The
updating procedure skyline update is in Algorithm 2.

Our focus is not to compare various skyline algorithms. Many existing algorithms
can be adopted. What matters is the number of candidate streaks produced by the
candidate generation step. This is also verified by our experiments, which show that
under various skyline algorithms, the candidate streak generation methods in Section 3
perform and compare consistently.

We can use a sorting-based method for finding the skyline points in a two-dimensional
space [Börzsönyi et al. 2001]. If the candidate streak generation step does not prune
streaks effectively, we cannot hold all candidate streaks in memory. The memory over-
flow can be addressed by external-memory sorting.

Another approach is to progressively update a dynamic skyline with candidate
streaks, based on the nested-loop method in Börzsönyi et al. [2001]. The outline of
this approach is shown in Algorithm 2. We use skyline to denote the dynamic skyline.
When a new candidate streak s is generated, s is inserted into skyline if it is not dom-
inated by any point in skyline. The algorithm also checks if some points in skyline are
dominated by s and eliminates them from skyline.

The dominance relationship can be efficiently checked, given that the streaks have
only two dimensions: interval length (r − l) and minimum value (v). The key idea is
that the lengths of streaks monotonically decrease as their minimal values increase,
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except that there can be identical points—for instance, streaks with equal lengths and
equal minimal values. Hence, the streaks in skyline are ordered by v (or by r − l).
Suppose that the candidate streak is s = 〈[l′, r′], v′〉. We find in skyline a pivoting streak
si = 〈[li, ri], vi〉 such that i is the largest index with vi ≤ v′—that is, vi ≤ v′ < vi+1. The
following Property 1 says that s must be dominated by si or si+1 if it is dominated by
any point in skyline, and Property 2 says that s can only dominate si and its immediate
neighbors with smaller v values. (For concise presentation, in these properties, we omit
the discussion of boundary cases, i.e., i = 0 or i = |skyline|.) For quickly finding si and
its neighbors, we use a balanced binary search tree (BST) on v to store skyline. (Thus,
we call it the BST-based skyline method.)

PROPERTY 1. A candidate streak s = 〈[l′, r′], v′〉 is dominated by some points in skyline
if and only if s is dominated by si or si+1, in which si = 〈[li, ri], vi〉 and i is the largest
index such that vi ≤ v′—that is, vi ≤ v′ < vi+1.

PROOF. We first prove that if there exists j < i such that sj = 〈[lj, rj], v j〉 � s, then
si � s. Since i is the largest index such that vi ≤ v′, we have v j ≤ vi ≤ v′. Given
that sj � s, we know v j = vi = v′ and rj − lj > r′ − l′. From v j = vi, we know that
rj − lj = ri − li; otherwise, they cannot both exist in skyline. Therefore, si � s.

We then prove that if there exists j > i + 1 such that sj = 〈[lj, rj], v j〉 � s, then
si+1 � s. Since the points in skyline are ordered by v, vi+1 ≤ v j and ri+1 − li+1 ≥ rj − lj .
We already know that v′ < vi+1 and rj −lj ≥ r′ −l′ (since sj � s). Therefore, si+1 � s. �

PROPERTY 2. If s = 〈[l′, r′], v′〉 dominates totally k streaks in skyline, then the k streaks
are si, si−1, . . . , si−k+1.

PROOF. Since the points in skyline are ordered by v, we know that vi ≤ v j and ri −
li ≥ rj − lj if i < j. So, s cannot dominate any sj such that j > i because v′ < vi+1 ≤ v j .
If s dominates si, then v′ ≥ vi and r′ − l′ ≥ ri − li. Since vi decreases by i and ri − li
increases by i, the k streaks dominated by s must be consecutively ordered. �

In comparison with the sorting-based method, the preceding BST-based skyline
method saves both memory space and execution time. It avoids memory overflow
because the number of streaks in the dynamic skyline in most cases remains small
enough to fit in memory. Hence, no streak needs to be read from/written to secondary
memory. The small size of dynamic skyline in real data is verified by our experiments
in Section 6. After all, prominent streaks (and skyline points in general) are supposed
to be minority; otherwise, they cannot stand out to warrant further investigation.
Furthermore, even if the dynamic skyline grows large, a method such as the block
nested loop(BNL)-based method in Börzsönyi et al. [2001] can be applied to fall back
on secondary memory. The small size of dynamic skyline also means a small number
of streak comparisons. Intuitively, given c candidate streaks, a fast comparison-based
sorting algorithm (say quicksort) requires O(c log c) comparisons, whereas the BST-
based method only requires O(c log s) comparisons, where s is the maximal size of the
dynamic skyline during computation. Experiments in Section 6 show that s is typically
much smaller than c.

Monitoring Prominent Streaks
A desirable property of a prominent streak discovery algorithm is the capability of mon-
itoring new data entries as the sequence grows continuously and always keeping the
prominent streaks up-to-date. The aforementioned algorithms naturally fit into such
monitoring scenario, with only minor modification. The details are given in Section 4.
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1.3. Summary of Contributions and Outline

To summarize, our work makes the following contributions:

—We define the problem of prominent streak discovery. The simple concept is useful
in many real-world applications. To the best of our knowledge, there has not been
study along this line except our prior work [Jiang et al. 2011].

—We propose the solution framework to separate candidate streak generation and
skyline operation during prominent streak discovery. Under this framework, we de-
signed efficient algorithms for candidate streak generation based on the concept of
LPS. Both the NLPS-based method and the LLPS-based method produce substan-
tially less candidate streaks than the quadratic number of candidates produced by a
baseline method. LLPS further guarantees a linear number of candidate streaks.

—We extend the solution framework to discovering general prominent streaks. Al-
though the extensions to top-k and multisequence prominent streaks are simple,
the extension to multidimensional prominent streak is nontrivial. These extensions
significantly broaden the real-world application scenarios of the work.

—We conduct experiments over multiple real datasets. The results verified the effec-
tiveness of our methods and showed orders of magnitude performance improvement
over the baseline method. We also showed some insightful prominent streaks discov-
ered from real data to highlight the practicality of this work.

The rest of the article is organized as follows. In Section 2, we review related work.
Section 3 presents the NLPS and LLPS methods for candidate streak generation.
Section 4 discusses how to adapt the algorithms to monitor prominent streaks when
data sequence continuously grows. Section 5 extends the concept of prominent streak
and the algorithms for finding general prominent streaks. Experiment setup and re-
sults are reported in Section 6. Section 7 concludes the article.

2. RELATED WORK

Data mining on sequence and time series data has been an active area of research,
where many techniques are developed for similarity search and subsequence match-
ing in sequence and time series databases [Agrawal et al. 1993; Faloutsos et al. 1993;
Agrawal et al. 1995; Yi et al. 1998], finding sequential patterns [Agrawal and Srikant
1995; Srikant and Agrawal 1996; Zaki 2001; Pei et al. 2004; Yan et al. 2003], classifi-
cation and clustering of sequence and time series data [Smyth 1997; Oates et al. 1999;
Liao 2005; Shin and Fussell 2007], biological sequence analysis [Altschul et al. 1990;
Rabiner 1989], and so on. However, we are not aware of prior work on the prominent
streak discovery problem proposed in this article.

The skyline of a set of tuples is the subset of tuples that are not dominated by any
tuple. A tuple dominates another tuple if it is equally good or better on every attribute
and better on at least one attribute. The notion of skyline is useful in several appli-
cations, including multicriteria decision making. Skyline query has been intensively
studied over the past decade. Kung et al. [1975] first proposed in-memory algorithms to
tackle the skyline problem, which they called the maximal vector problem. Börzsönyi
et al. [2001] considered the problem in database context and integrated skyline op-
erator into the database system. They also invented a BNL algorithm and extended
the divide-and-conquer algorithm from Kung et al. [1975]. Chomicki et al. [2003] pre-
sented the sort-filter-skyline algorithm, which improves upon the BNL algorithm by
presorting tuples with a function compatible with the skyline criteria. We apply skyline
algorithms over candidate streaks, but our methods are orthogonal to specific choices
of skyline algorithms.
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A dataset may have too many skyline tuples, especially when the dimensionality of
the data is high. Various approaches have been proposed to alleviate this problem. For
example, Pei et al. [2006] and Tao et al. [2006] proposed to perform skyline analysis in
subspaces instead of the original full space. Several methods were designed to find the
representatives among a large number of skyline points [Zhang et al. 2005; Chan et al.
2006; Lin et al. 2007; Tao et al. 2009].

Progressive skyline algorithms optimize the efficiency in returning initial skyline
points while producing more results progressively. Various algorithms developed along
this line include the bitmap-based algorithm and the index-based algorithm [Tan et al.
2001], the nearest neighbor search algorithm [Kossmann et al. 2002], and the branch-
and-bound skyline algorithm [Papadias et al. 2005]. Other variants of skyline queries
have also been studied, including skyline cube, which aims to answer skyline queries
over any combination of dimensions [Pei et al. 2006; Xia and Zhang 2006].

Jiang and Pei [2009] studied the problem of interval skyline queries on time series.
Given a set of time series and a time interval, they find the time series that are not
dominated by others in the interval. A time series dominates another one if its value at
every position is at least equal to the corresponding value in the other time series and
is at least larger at one position. The point-by-point equi-length interval comparison is
clearly different from our problem.

The plateau of a time series is the time interval in which the values are close to
each other (within a given threshold) and are no smaller than the values outside the
interval [Wang and Wang 2006]. The plateau problem is not concerned about comparing
different intervals.

3. DISCOVERING PROMINENT STREAKS FROM LOCAL PROMINENT STREAKS

For an n-element sequence P, the baseline method (Algorithm 1) produces n(n+1)
2 can-

didate streaks. In this section, based on the concept of LPS, we propose the NLPS-
and LLPS-based methods. Both drastically reduce the number of candidate streaks in
practice. LLPS further guarantees only a linear number of candidate streaks.

3.1. Local Prominent Streak

Definition 2 (Local Prominent Streak). Given a sequence of data values P =
(p1, . . . , pn), we say a streak s = 〈[l, r], v〉 ∈ SP is an LPS or locally prominent if there
does not exist any other streak s′ = 〈[l′, r′], v′〉 ∈ SP such that [l′, r′] ⊃ [l, r] and s′ � s.
(That is, there does not exist such s′ that [l′, r′] ⊃ [l, r] and v′ ≥ v.) The symbol ⊃
denotes the subsumption check between two intervals (i.e., [l′, r′] ⊃ [l, r]) if and only if
l′ ≤ l ∧ r′ > r or l′ < l ∧ r′ ≥ r. We denote the set of LPSs in sequence P as LPSP .

Figure 2 shows all of the LPSs found in our running example. All other streaks are
not locally prominent. For example, 〈[6, 8], 4〉 is not locally prominent, because it is
dominated by 〈[6, 9], 4〉 and [6, 9] ⊃ [6, 8]. In the following sections, we give several
important properties of LPSs.

PROPERTY 3. Every prominent streak is also an LPS—that is, PSP ⊆ LPSP.

PROOF. Suppose that there is a prominent streak that is not locally prominent (i.e.,
∃s ∈ PSP such that s /∈ LPSP). By Definition 2, there exists some streak s′ such that
[l′, r′] ⊃ [l, r] and s′ � s. That is contradictory to Definition 1, which says that s is not
dominated by any other streak. Therefore, a streak cannot be prominent if it is not
even locally prominent. �

Property 3 is illustrated by Figure 2, as all prominent streaks in Figure 1 also appear
in Figure 2. However, the reverse of Property 3 does not hold—LPSs are not necessarily
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Fig. 2. Local prominent streaks.

prominent streaks. For example, 〈[8, 9], 6〉 is an LPS but is dominated by 〈[3, 4], 7〉 and
therefore is not in Figure 1.

LEMMA 1. Suppose that s = 〈[l, r], v〉 and s′ = 〈[l′, r′], v′〉 are two different LPSs in P—
that is, s, s′ ∈ LPSP, l �= l′, or r �= r′. For any k ∈ argmini∈[l,r] pi and k′ ∈ argmini∈[l′,r′] pi,
we have k �= k′—that is, argmini∈[l,r] pi ∩ argmini∈[l′,r′] pi = ∅.

PROOF. If [l, r] ∩ [l′, r′] = ∅ (i.e., the two intervals do not overlap), it is obvious that
k �= k′. Now consider the case when [l, r] ∩ [l′, r′] �= ∅—that is, l ≤ l′ ≤ r or l′ ≤ l ≤ r′.
By definition of argmin, pk = v = mini∈[l,r] pi and pk′ = v′ = mini∈[l′,r′] pi. Suppose that
there exist such k and k′ that k = k′. Thus, v = v′ = pk. By Definition 1, we have pi ≥ v
for every i ∈ [l, r] and every i ∈ [l′, r′]. Since the two intervals [l, r] and [l′, r′] overlap,
their combined interval corresponds to a new streak s′′ = 〈[l, r] ∪ [l′, r′], v〉.1 It is clear
that s′′ � s and s′′ � s′. That is a contradiction to the precondition that both s and s′ are
LPSs. Thus, this lemma holds. �

Lemma 1 indicates that two different LPSs cannot reach their minimal values at
the same position. Therefore, each value position in sequence P can correspond to the
minimal value of at most one LPS. What immediately follows is that there are at most
n LPSs in an n-element sequence. Formally, we have the following property.

PROPERTY 4. |LPSP | ≤ |P|.
From Property 3, we know that LPSP is a sufficient candidate set for PSP—that is,

we can guarantee to find all prominent streaks if we only consider LPSs. Property 4
further shows how smallLPSP is and thus how good it is as a candidate set. Specifically,
the size of LPSP is at most |P|, the length of the sequence, in contrast to all |P|(|P|+1)

2
possible streaks considered by the baseline method (Algorithm 1). Thus, LPSP helps
to prune most streaks from further consideration. In the following sections, we present
efficient algorithms for computing a superset of LPSP and LPSP itself exactly.

3.2. LPSk
P and LPSk

Pk

To facilitate our discussion, we first define a new notation, LPSk
P .

Definition 3. LPSk
P is the set of LPSs in P that end at position k—that is, LPSk

P =
{s|s ∈ LPSP and s = 〈[l, k], v〉}.

1The two intervals can overlap in four different ways. Thus, [l, r] ∪ [l′, r′] = [l, r] or [l, r′] or [l′, r] or [l′, r′].
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Fig. 3. From LPS9
P9

to LPS10
P10

.

There are two key components in the definition of LPSk
P . The first is the upper script

k, which fixes the right end of every interval in the set. It is clear that LPS1
P , LPS2

P, . . . ,

LPS |P|
P is a natural partition of LPSP . We use this partition scheme in the design of

our algorithms. Specifically, we show how each LPSk
P in this partition is calculated in

a sequential and progressive way.
The second key component in the definition of LPSk

P is the lower script P, which
provides the scope for LPSs. By generalizing this component, we define LPSk

Pk
. We

denote the sequence with the first k entries of P as Pk. Then, LPSPk is the set of LPSs
with regard to sequence Pk (instead of P), and LPSk

Pk
are those LPSs in LPSPk that

end at k. Due to the change of scope, LPSk
Pk

is a superset of LPSk
P . Formally, we have

the following property.

PROPERTY 5. LPSk
P ⊆ LPSk

Pk
.

PROOF. Consider any streak s ∈ LPSk
P . By Definition 3, s = 〈[l, k], v〉 and s ∈ LPSP .

Therefore, by Definition 2, there does not exist any s′ = 〈[l′, r′], v′〉 in P such that s′ � s
and [l′, r′] ⊃ [l, k]. Since Pk is a prefix of P (i.e., the first k values in P), it follows that
there does not exist any such s′ in Pk either. Thus, s ∈ LPSk

Pk
. �

Consider the running example again. Figure 3(a) shows LPS9
P9

, including 〈[1, 9], 1〉,
〈[3, 9], 2〉, 〈[6, 9], 4〉, 〈[8, 9], 6〉, 〈[9, 9], 7〉. As shown in Figure 2, LPS9

P contains
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ALGORITHM 3: Nonlinear LPS Method
Input: Data sequence P = (p1, . . . , pn)
Output: Prominent streaks skyline

1 skyline ← empty
2 for k = 1 to n do
3 Compute LPSk

Pk
by Algorithm 4

4 for each streak s in LPSk
Pk

do
5 skyline ← skyline update(skyline, s)

〈[6, 9], 4〉, 〈[8, 9], 6〉, 〈[9, 9], 7〉. Streaks 〈[1, 9], 1〉 and 〈[3, 9], 2〉 do not belong to LPSP

and thus do not belong to LPS9
P since they are locally dominated by 〈[1, 10], 1〉 and

〈[3, 10], 2〉, respectively. By contrast, 〈[1, 9], 1〉 and 〈[3, 9], 2〉 are part of LPS9
P9

because
they are not locally dominated by any streak of P9, which only contains the first nine
values of P.

3.3. Nonlinear LPS Method

By Property 5 and the fact that LPS1
P, . . . ,LPS |P|

P is a partition of LPSP , we have

LPSP =
⋃

1≤k≤|P|
LPSk

P ⊆
⋃

1≤k≤|P|
LPSk

Pk
. (1)

Thus, we can use
⋃

1≤k≤|P| LPSk
Pk

as our candidate set for prominent streaks. Although
its size can be greater than that of LPSP , in practice it does substantially reduce the
size of candidate streaks, verified by the experimental results in Section 6.

Along this line, Algorithm 3 presents the method to compute candidate streaks. Since
the number of candidates may be superlinear to the length of data sequence, it is re-
ferred to as an NLPS. The algorithm iterates k from 1 to |P|, progressively computes
LPSk

Pk
from LPSk−1

Pk−1
when the k-th element pk is visited, and includes them into candi-

date streaks. The details of updating from LPSk−1
Pk−1

to LPSk
Pk

are in Algorithm 4, which
is based on the following Lemma 2. For convenience of discussion, we first define the
right-end extension of a streak and a streak set.

ALGORITHM 4: Progressive Computation of LPSk
Pk

Input: LPSk−1
Pk−1

and pk

Output: LPSk
Pk

// When it starts, stack lps consists of streaks in LPSk−1
Pk−1

.
1 pivot ← null
2 while ! lps.isempty() do
3 if lps.top().v < pk then
4 break
5 else
6 pivot ← lps.pop()
7 if pivot == null then
8 lps.push(〈[k, k], pk〉)
9 else

10 pivot.v ← pk
11 lps.push(pivot)

// Now, lps contains all of the streaks in LPSk
Pk

.
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Definition 4. If s = 〈[l, r], v〉 is a streak in an n-element data sequence P and
r < n, the right-end extension of s is streak 〈[l, r + 1], v′〉, where v′ = min{v, pr+1}. The
extension of a streak set S is the set that consists of extensions of all streaks in S.

LEMMA 2. If s1 = 〈[l, k], v1〉 ∈ LPSk
Pk

and l �= k, then the streak s2 = 〈[l, k − 1], v2〉 ∈
LPSk−1

Pk−1
.

PROOF. First, note that v2 = minl1≤i≤k−1 pi and v1 = min{v2, pk}. We prove by con-
tradiction. Suppose that s2 = 〈[l1, k − 1], v2〉 /∈LPSk−1

Pk−1
. By Definition 3, s2 /∈LPSPk−1 .

Further, by Definition 2, there exists s3 = 〈[l3, r3], v3〉 ∈ SPk−1 such that [l3, r3] ⊃
[l1, k − 1] and s3 � s2. Given any s = 〈[l, r], v〉 ∈ SPk−1 , we have r ≤ k − 1. There-
fore, r3 = k − 1, l3 < l1 and v3 ≥ v2. The right-end extension of s3 is s4 = 〈[l3, k], v4〉,
where v4 = min{v3, pk} ≥ min{v2, pk} = v1. Thus, s4 � s1, which contradicts with the
precondition that s1 ∈LPSk

Pk
. The property holds. �

Lemma 2 indicates that, except 〈[k, k], pk〉, for each streak in LPSk
Pk

, its prefix streak
is inLPSk−1

Pk−1
. Hence, to produceLPSk

Pk
, we only need to consider the right-end extension

of LPSk−1
Pk−1

. Beyond that, we only need to consider one extra streak 〈[k, k], pk〉 since it
may belong to LPSk

Pk
as well.

To articulate how to deriveLPSk
Pk

fromLPSk−1
Pk−1

, we partitionLPSk−1
Pk−1

into two disjoint
sets, namely,

LPSk−1
Pk−1

< = {
s|s = 〈[l, k − 1], v〉 ∈ LPSk−1

Pk−1
, v < pk

}
, (2)

LPSk−1
Pk−1

≥ = {
s|s = 〈[l, k − 1], v〉 ∈ LPSk−1

Pk−1
, v ≥ pk

}
. (3)

It is clear that LPSk−1
Pk−1

is the disjoint union of these two sets—that is, LPSk−1
Pk−1

=
LPSk−1

Pk−1

< ∪ LPSk−1
Pk−1

≥
and LPSk−1

Pk−1

< ∩ LPSk−1
Pk−1

≥ = ∅. Use the running example again.

ForLPS9
P9

in Figure 3(a), since p10 = 3, the two sets areLPS9
P9

< = {〈[1, 9], 1〉, 〈[3, 9], 2〉},
LPS9

P9

≥ = {〈[6, 9], 4〉, 〈[8, 9], 6〉, 〈[9, 9], 7〉}.
We consider how to extend streaks in LPSk−1

Pk−1

<
and LPSk−1

Pk−1

≥
, respectively. For sim-

plicity of presentation, we omit the formal proofs when we make the following various
statements:

—LPSk−1
Pk−1

<
: We use S1 to denote the right-end extension of LPSk−1

Pk−1

<
. Since ev-

ery streak in LPSk−1
Pk−1

<
has a minimal value less than pk, the corresponding ex-

tended new streak has the same minimal value. Hence, all of the new streaks
belong to LPSk

Pk
. For the running example, corresponding to LPS9

P9

<
, we have

S1 = {〈[1, 10], 1〉, 〈[3, 10], 2〉}.
—LPSk−1

Pk−1

≥
: We use S2 to denote the right-end extension of LPSk−1

Pk−1

≥
. Since every

streak in LPSk−1
Pk−1

≥
has a minimal value greater than or equal to pk, the minimal

value of every streak in S2 equals pk. Hence, the longest streak in S2, denoted as
S2∗, dominates all other streaks in S2, and it is the only streak in S2 that belongs
to LPSk

Pk
. In other words, we only need to extend the longest streak in LPSk−1

Pk−1

≥
to

form a new candidate streak. Furthermore, since every streak in S2 has the same r
value (the right end of the interval)—that is, k—S2∗ is the streak with the minimal
l value (the left end of the interval) in S2. Clearly, there cannot be another streak
in S2 with the same length. For the running example, corresponding to LPS9

P9

≥
, we

ACM Transactions on Knowledge Discovery from Data, Vol. 8, No. 2, Article 9, Publication date: May 2014.



Discovering General Prominent Streaks in Sequence Data 9:13

have S2 = {〈[6, 10], 3〉, 〈[8, 10], 3〉, 〈[9, 10], 3〉}. The longest streak in S2 is 〈[6, 10], 3〉.
It is clear that 〈[6, 10], 3〉 dominates other streaks in S2. Hence, it belongs to
LPS10

P10
.

—LPSk−1
Pk−1

≥ = ∅: If LPSk−1
Pk−1

≥
is empty, a new streak 〈[k, k], pk〉 belongs to LPSk

Pk
. (Oth-

erwise, it is dominated by S2∗.)

The preceding discussion is captured by the following Property 6.

PROPERTY 6. LPSk
Pk

= S1 ∪ {S2∗} if S2 �= ∅ and LPSk
Pk

= S1 ∪ {〈[k, k], pk〉} if S2 = ∅.

We use Figure 3 to explain the procedure previously shown of producing LPSk
Pk

from LPSk−1
Pk−1

. Figure 3(a) and 3(b) show LPS9
P9

and LPS10
P10

, respectively. Figure 3(c)
and 3(d) also show LPS9

P9
and LPS10

P10
by using a different presentation—l-v plot. All

streaks 〈[l, r], v〉 in LPSk−1
Pk−1

share the same value of r, which is k − 1. Therefore, we
plot the streaks by l (x-axis) and v (y-axis). In Figure 3(c), the five points represent the
five streaks in LPS9

P9
: 〈[1, 9], 1〉, 〈[3, 9], 2〉, 〈[6, 9], 4〉, 〈[8, 9], 6〉, 〈[9, 9], 7〉. The dotted

line represents the 10th data entry p10 = 3. It bisects LPS9
P9

into LPS9
P9

≥
(three

hollow points above the line) and LPS9
P9

<
(two filled points below the line). We produce

new candidate streaks LPS10
P10

by extending the right ends of streaks in LPS9
P9

to
10. The streaks extended from LPS9

P9

<
all belong to LPS10

P10
. They are the two filled

points in Figure 3(d), corresponding to 〈[1, 10], 1〉 and 〈[3, 10], 2〉. Among the streaks
extended from LPS9

P9

≥
, only the one with the smallest l (the longest one) belongs

to LPS10
P10

. It is the hollow point in Figure 3(d), corresponding to 〈[6, 10], 3〉. Hence,
LPS10

P10
= {〈[1, 10], 1〉, 〈[3, 10], 2〉, 〈[6, 10], 3〉}.

The details of the algorithm are shown in Algorithm 4. We use a stack lps to maintain
LPSk

Pk
. Since the streaks 〈[l, r], v〉 in LPSk

Pk
have the same r value, which equals k, we

do not need to store r in lps. Hence, each item in lps has two data attributes: v and
l. The items in the stack are ordered by v (and l). More specifically, their v and l
values both strictly monotonically increase, from the bottom of the stack to the top.
The monotonicity on l is obvious, as they are different streaks of the same r value. The
monotonicity on v thus is also clear because their length monotonically decreases due to
monotonically increasing l, and they must not dominate each other. In fact, Figure 3(c)
and 3(d) visualize all items in lps, before and after p10 is encountered, respectively. In
each figure, the left-most point denotes the bottom of the stack (with the smallest v),
whereas the right-most point denotes the top of the stack (with the largest v). After
data entries p1, . . . , pk−1 are encountered, lps contains LPSk−1

Pk−1
. Given data entry pk,

we popped from the stack all streaks whose v values are greater than or equal to pk.
Among the popped streaks, the left-most one (with the smallest l and v) is pushed back
into the stack, with v value replaced by pk and r extended from k − 1 to k. (Again, the
r value is not explicitly stored in the stack.) If no streak was popped, then 〈[k, k], pk〉 is
pushed into the stack. The remaining streaks in the original stack are kept, with their
v and l values unchanged and r extended from k − 1 to k.

Algorithm 3 computes candidate streaks for an n-element sequence P. It invokes
Algorithm 4 n times.2 In each invocation, exactly one item is pushed into the stack.

2With regard to the first data element p1, 〈[1, 1], p1〉 is pushed into the stack. It is the only prominent streak
and LPS for P1.
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ALGORITHM 5: Linear LPS Method
Input: Data sequence P = (p1, . . . pn)
Output: Prominent streaks skyline

1 skyline ← empty
2 for k = 1 to n do
3 Compute LPSk−1

P and LPSk
Pk

by Algorithm 6
4 for each streak s in LPSk−1

P do
5 skyline ← skyline update(skyline, s)
6 LPSn

P ← LPSn
Pn

7 for each streak s in LPSn
P do

8 skyline ← skyline update(skyline, s)

ALGORITHM 6: Computing LPSk−1
P and LPSk

Pk

Input: LPSk−1
Pk−1

and pk

Output: LPSk−1
P and LPSk

Pk

// Insert the following line before Line 1 in Algorithm 4.
1 LPSk−1

P ← ∅
// Insert the following two lines after Line 6 in Algorithm 4, in the same else

branch as Line 6.
2 if pivot.v > pk then
3 LPSk−1

P ← LPSk−1
P ∪ {pivot}

Therefore, in total there are n insertions and thus at most n deletions. Hence, the
amortized time complexity of Algorithm 4 is O(1).

In each iteration of Algorithm 3, we compute LPSk
Pk

and include them into candidate
streaks. Thus, for an n-element sequence, the total number of candidate streaks con-
sidered is

∑n
k=1 |LPSk

Pk
|. In the worst case, we may have a strictly increasing sequence

and the candidate streaks include all possible streaks. This is as bad as the exhaustive
baseline method in Algorithm 1. For example, given sequence (10, 20, 30), we have
LPS1

P1
= {〈[1, 1], 10〉}, LPS2

P2
= {〈[1, 2], 10〉, 〈[2, 2], 20〉}, and LPS3

P3
= {〈[1, 3], 10〉,

〈[2, 3], 20〉, 〈[3, 3], 30〉}.

3.4. Linear LPS Method

Now we present LLPS method (Algorithm 5), which guarantees to produce a linear
number of candidate streaks even in the worst case. Similar to Algorithm 3, this method
iterates through the data sequence and computes LPSk

Pk
from LPSk−1

Pk−1
when the k-th

data entry is encountered, for k from 1 to n. However, different from Algorithm 3, it
also computes LPSk−1

P from LPSk−1
Pk−1

. Computation of both LPSk
Pk

and LPSk−1
P is done

in Algorithm 6, which is a simple extension of Algorithm 4. It is worth noting that,
since Pn = P, LPSn

P and LPSn
Pn

are identical.
To produce LPSk−1

P from LPSk−1
Pk−1

given the k-th entry pk, Algorithm 6 is based on
the following Property 7. Its intuition is as follows. Recall that the minimal value of
any streak in LPSk−1

Pk−1

≥
(Equation (3)) is not smaller than pk. It follows that if the

minimal value of a streak in LPSk−1
Pk−1

≥
is greater than pk, the streak cannot grow into a

longer LPS without changing the minimal value. Hence, the streak itself is an LPS. To
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summarize, LPSk−1
P is the same as LPSk−1

Pk−1

≥
. The only exception is the longest streak

in LPSk−1
Pk−1

≥
—that is, the streak with the smallest l and thus the smallest minimal

value v. If its minimal value is equal to pk, then it does not belong LPSk−1
P , because it

can be right extended and included in LPSk′
P for some k′ ≥ k.

LEMMA 3. For an n-entry sequence P, a streak s = 〈[l, r], v〉 is an LPS if and only if
(l = 1 or v > pl−1) and (r = n or v > pr+1).

PROOF. We prove by contradiction. Consider l > 1. If v ≤ pl−1, then s is dominated
by 〈[l − 1, r], v〉, which contradicts with s being an LPS. Consider r < n. Similarly if
v ≤ pr+1, then s is dominated by 〈[l, r + 1], v〉, which contradicts with s being locally
prominent. �

PROPERTY 7. Given an n-entry sequence P, for any position 1 < k ≤ n, LPSk−1
P =

{s|s = 〈[l, k − 1], v〉 ∈ LPSk−1
Pk−1

≥
and v > pk}.

PROOF. Proof of the equality from left to right: suppose that streak s = 〈[l, k−1], v〉 ∈
LPSk−1

P . By Property 5 s ∈ LPSk−1
Pk−1

, and by Lemma 3 v > pk. By the concept of LPSk−1
Pk−1

≥

in Equation (3), s ∈ LPSk−1
Pk−1

≥
.

Proof of the equality from right to left: suppose that streak s = 〈[l, k − 1], v〉 satisfies
s ∈ LPSk−1

Pk−1

≥
and v > pk. Then, s is an LPS in the scope of LPSk−1

Pk−1
, which means, by

Lemma 3, that l = 1 or v > pl−1. Since v > pk, by Lemma 3 s is an LPS in P. Therefore,
s ∈ LPSk−1

P . �

Continue the running example. LPS9
P = LPS9

P9

≥ = {〈[6, 9], 4〉, 〈[8, 9], 6〉, 〈[9, 9], 7〉}.
Note that LPS9

P9

≥
and LPS9

P are identical because the minimal values for the streaks

in LPS9
P9

≥
are all greater than p10.

Similar to Algorithm 4, Algorithm 6 has an amortized time complexity of O(1). With
regard to candidate streaks, LLPS is different in that it only needs to consider the
streaks in LPSk−1

P as candidates. Consequently, LLPS reduces the total number of
candidate streaks to

∑n
k=1 |LPSk

P |, i.e., |LPSP | (Equation (1)). By Property 4, |LPSP | is
n at most, thus LLPS guarantees to produce only a linear number of candidate streaks
even in the worst case.

4. MONITORING PROMINENT STREAKS

One desirable property of a prominent streak discovery algorithm is the capability of
monitoring new data entries as the sequence grows continuously and always keeping
the prominent streaks up-to-date. For example, a network administrator may check the
prominent streaks in the network traffic of a Web server until any particular moment.
Formally, given a continuously growing data sequence P (e.g., a data stream), the k-th
data entry that has just come is denoted by pk and the sequence so far is denoted by
Pk. At this moment, if the user requests PSPk, the prominent streaks of Pk, our method
should efficiently discover them.

With regard to skyline operation, the BST-based method progressively updates the
dynamic skyline with new candidate streaks and thus can be applied for monitoring
prominent streaks without modification.

With regard to candidate streak generation, all three methods (baseline, NLPS,
LLPS) use one-pass sequential scan of the data sequence; therefore, they all naturally
fit into the monitoring scenario. Specifically, the new data point pk corresponds to
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ALGORITHM 7: Continuous Monitoring of Prominent Streaks
Input: The new data entry pk

1 Compute LPSk−1
P and LPSk

Pk
by Algorithm 6

2 if last requested position < k − 1 then
3 for each streak s in LPSk−1

P do
4 skyline← sklyine update(skyline, s)
5 if PSPk is requested then
6 for each streak s in LPSk

Pk
do

7 skyline← sklyine update(skyline, s)
8 last requested position ← k
9 // Now, skyline contains all prominent streaks in PSPk

the next iteration of the outer loop in Algorithms 1, 3, and 5. The baseline method
exhaustively lists all streaks ending at pk and updates the skyline with these streaks.
The NLPS method updates LPSk−1

Pk−1
to LPSk

Pk
and updates the skyline with the streaks

in LPSk
Pk

.
The adaptation of LLPS is a bit more complex, as shown in Algorithm 7. This algo-

rithm records the last position when the user requested the prominent streaks. When
pk arrives, LPSk−1

P and LPSk
Pk

are dynamically computed by Algorithm 6. The skyline
is updated with the candidate streaks in LPSk−1

P , only if PSPk−1 was not requested by
the user when pk−1 was visited. Note that if PSPk−1 were requested, the skyline has
already been updated with the streaks in LPSk−1

Pk−1
. Since LPSk−1

P ⊆ LPSk−1
Pk−1

, we do not
need to update the skyline with LPSk−1

P again. Finally, if the user requests PSPk, then
the skyline has to be updated with LPSk

Pk
since all LPSs (with regard to Pk) ending

at pk must be considered. In Section 6, we will show the significant superiority of this
adaptation of LLPS over other methods.

Note that this algorithm degrades to NLPS (Algorithm 3) if the user requests the
prominent streaks at every data entry. On the other hand, if the prominent streaks are
only requested at pn (i.e., the last entry in the sequence), it becomes the same as LLPS
(Algorithm 5).

5. DISCOVERING GENERAL PROMINENT STREAKS

In this section, we extend the concept of prominent streak and the algorithms intro-
duced in previous sections to general cases. Specifically, we investigate how to discover
top-k, multisequence, and multidimensional prominent streaks.

5.1. Top-k Prominent Streaks

Definition 5 (Top-k Prominent Streak). With regard to a sequence P = (p1, . . . , pn)
and its LPSs LPSP , a streak s ∈ LPSP is a top-k prominent streak if it is not dominated
by k or more streaks in LPSP—that is, |{s′|s′ ∈ LPSP and s′ � s}| < k. The set of all
top-k prominent streaks in P is denoted by KPSP . Note that there can be more than k
top-k prominent streaks.

Top-k prominent streaks are those LPSs dominated by less than k other LPSs, by
Definition 5. This definition has two implications. First, a top-k prominent streak must
be locally prominent. For instance, a streak does not qualify even if it is only dominated
by one subsuming streak and k > 1. Second, a streak can qualify even if it is dominated
by k or more other streaks, as long as less than k of those dominating streaks are LPSs.
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Consider a sequence P = (20, 30, 25, 30, 5, 5, 15, 10, 15, 5), corresponding to the
points made by a basketball player in all of his games. The streak 〈[3, 4], 25〉, although
only dominated by 〈[2, 4], 25〉, is a substreak of the latter and hence is not a top-2
prominent streak. The intuitive explanation is that 〈[3, 4], 25〉 is within the interval
of 〈[2, 4], 25〉, and therefore we do not consider it important. On the other hand, the
streak 〈[7, 9], 10〉 is a top-2 prominent streak. Although it is dominated by three
streaks, 〈[1, 4], 20〉, 〈[1, 3], 20〉, and 〈[2, 4], 25〉, the dominating streaks are all from the
same period and only one of the three is an LPS.

The candidate streak generation methods discussed in previous sections are appli-
cable in discovering top-k prominent streaks. We only need several small changes on
skyline operation. For LLPS, since the candidates produced are guaranteed to be LPSs
only, we simply need to maintain a counter for each current skyline point in the dy-
namic skyline. The counter of a point records the number of its dominators in the
skyline. When a candidate is compared against current skyline points, it is inserted
into the skyline if it has less than k dominators. A current skyline point is removed if
its counter reaches k. With regard to the baseline method and NLPS, they may pro-
duce candidates that are not LPSs. A candidate must be pruned if another candidate
streak dominates it and subsumes it. (Note that they both produce candidates with the
same right end of interval at the same time. Therefore, a candidate cannot be locally
dominated by existing points in the current skyline.)

5.2. Multisequence Prominent Streaks

Definition 6 (Multisequence Prominent Streak). Given multiple sequences P =
{P1, . . . , Pm} and their corresponding sets of streaks SP1 , . . . ,SPm, a streak s ∈ SPi

is a multisequence prominent streak in P if there does not exist a streak in any se-
quence that dominates s. More formally, �s′, j such that s′ ∈SP j , and s′� s. The set of
all multisequence prominent streaks with regard to P is PSP .

As an example, consider three sequences corresponding to the points made by three
basketball players in all of their games—P1 = (20, 30, 25, 30, 5, 5, 15, 10, 15, 5), P2 =
(10, 5, 30, 35, 21, 25, 5, 15, 5, 25), and P3 = (5, 10, 15, 5, 25, 10, 20, 5, 15, 10). The streak
〈[1, 4], 20〉 of P1 is a prominent streak within P1 itself but is dominated by 〈[3, 6], 21〉
in P2. Hence, it is not a multisequence prominent streak.

The extension from single-sequence algorithms (baseline, NLPS, LLPS) to multi-
sequence algorithms is simple. We process individual sequences separately by the
single-sequence algorithms and use a common dynamic skyline to maintain their
prominent streaks. That is, when an LPS within a sequence Pi is identified, it is
compared with current streaks in the dynamic skyline, which contains prominent
streaks from all sequences.

5.3. Multidimensional Prominent Streaks

Definition 7 (Multidimensional Prominent Streak). In an n-entry d-dimensional se-
quence P = ( �p1, . . . , �pn), a point �pi is a d-dimensional vector of data values. A streak s
in P is an interval-vector pair 〈[l, r], �v〉, where

�v =
(

min
l≤i≤r

�pi[1], . . . , min
l≤i≤r

�pi[d]
)

, (4)

�pi[ j] is the j-th dimension of �pi, and 1 ≤ l ≤ r ≤ n.
A d-dimensional vector �v = (�v[1], . . . , �v[d]) dominates another vector �v′ =

( �v′[1], . . . , �v′[d]), denoted by �v � �v′, if and only if �v(1) ≥ �v′[1], . . . , �v[d] ≥ �v′[d] and
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ALGORITHM 8: Update Dynamic Skyline for Multidimensional Sequences (skyline update)
Input: Dynamic skyline skyline, new candidate streak s = 〈[l, r], �v〉
Output: Updated dynamic skyline skyline

1 dominating ← Find streaks in skyline that dominate s, by a range query on the KD-tree
over skyline

2 if dominating �= ∅ then
3 return skyline
4 dominated ← Find streaks in skyline that are dominated by s, by another range query on

the KD-tree
5 Remove dominated from skyline
6 Insert s into skyline
7 return skyline

∃ j such that �v[ j] > �v′[ j]. Moreover, we use �v � �v′ to denote the case when �v dominates
or equals �v′.

A streak s = 〈[l, r], �v〉 dominates another streak s′ = 〈[l′, r′], �v′〉, denoted by s � s′, if
and only if r − l ≥ r′ − l′ and �v � �v′, or r − l > r′ − l′ and �v � �v′.

The set of all possible streaks is denoted by SP . A streak s ∈SP is a prominent streak
if it is not dominated by any streak in SP—that is, �s′ such that s′ ∈SP and s′ � s. The
set of all multidimensional prominent streaks in P is denoted by PSP .

For a running example in this section, consider a two-dimensional sequence P =
((10, 10),(40, 20),(40, 30),(30, 40),(50, 30),(20, 30)). By the preceding definition, there
are eight prominent streaks in P—〈[1, 6], (10, 10)〉, 〈[2, 3], (40, 20)〉, 〈[2, 5], (30, 20)〉,
〈[2, 6], (20, 20)〉, 〈[3, 5], (30, 30)〉, 〈[3, 6], (20, 30)〉, 〈[4, 4], (30, 40)〉, 〈[5, 5], (50, 30)〉.
Other streaks are not prominent. For instance, 〈[2, 4], (30, 20)〉 is dominated by
〈[3, 5], (30, 30)〉.

In finding prominent streaks from a d-dimensional sequence, skyline operations
perform a dominance relationship test on d + 1 dimensions—d dimensions for data
values and one special dimension for streak length. We maintain a KD-tree [Bentley
1975, 1979] on current skyline points. Given a candidate streak, we use a range query
on the KD-tree to efficiently find its dominating points in the current skyline and
another ranger query to find its dominated points in the current skyline. Specifically,
Algorithm 2 is replaced by Algorithm 8 for multidimensional sequences. We do not
further discuss how to answer range queries by multidimensional index structures
such as KD-tree as it is well studied.

With regard to candidate streak generation, the brute-force baseline method does not
require change, except that min value and its calculation in Algorithm 1 are replaced
according to the definition of vector �v in Equation (4). Our focus in the rest of this
section is to extend the concept of LPS and its properties to adapt NLPS and LLPS for
multidimensional data sequence. Note that Property 3, Property 5, and Lemma 2 still
hold and can be proven in the same way as for single-dimensional sequence. We thus
will use the result directly without tediously showing the proof. With the adaptation of
NLPS and LLPS for multidimensional sequences, the continuous monitoring approach
in Algorithm 7 works in the same way.

Definition 8. For a multidimensional sequence P, a streak s = 〈[l, r], �v〉 ∈ SP is an
LPS if and only if there does not exist any other streak s′ = 〈[l′, r′], �v′〉 ∈ SP , such that
[l′, r′] ⊃ [l, r] and s′ � s. (That is, there does not exist such s′ that [l′, r′] ⊃ [l, r] and
�v′ � �v.) We use LPSP to denote the set of all LPSs in P.
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For a multidimensional sequence, Property 3 still holds. Hence, every prominent
streak in a multidimensional sequence P is also an LPS—that is, PSP ⊆ LPSP—and
thus we can still find LPSP and use it as the set of candidate streaks. Computing
LPSs in a multidimensional sequence is quite similar to that in a single-dimensional
sequence. The concepts of LPSk

P and LPSk
Pk

remain the same, except that the �v in
each streak 〈[l, r], �v〉 is a multidimensional vector instead of a single numeric value.
Property 5 also holds. Therefore, the essential ideas of NLPS and LLPS algorithms
remain unchanged. NLPS iterates k from 1 to |P|, progressively computes LPSk

Pk
from

LPSk−1
Pk−1

when the k-th element �pk is visited, and includes LPSk
Pk

into candidate streaks.
LLPS does not immediately include all of LPSk

Pk
into candidate streaks. Instead, it

waits until seeing �pk+1, then computes LPSk
P (in addition to LPSk+1

Pk+1
) from LPSk

Pk
,

and only includes LPSk
P into candidate streaks. Hence, LLPS only considers LPSs

(LPSP = ⋃n
k=1 LPSk

P) as candidates, whereas NLPS needs to consider more candidates
(
⋃n

k=1 LPSk
Pk

), since LPSk
P is subsumed by LPSk

Pk
according to Property 5.

5.3.1. Key Ideas. Our following discussion focuses on how to compute LPSk
Pk

and
LPSk−1

P from LPSk−1
Pk−1

, when the k-th element �pk arrives. To facilitate the discussion, we

partition LPSk−1
Pk−1

into two disjoint sets LPSk−1
Pk−1

�
and LPSk−1

Pk−1

��
, as shownnext, which

are similar to LPSk−1
Pk−1

<
and LPSk−1

Pk−1

≥
in Equations (2) and (3). LPSk−1

Pk−1

�
is the set of

streaks for which the value at any dimension of the vector �v is not greater than the
corresponding value in �pk. LPSk−1

Pk−1

��
is the set of streaks for which �v is greater than �pk

on at least one dimension.

LPSk−1
Pk−1

� = {
s|s = 〈[l, k − 1], �v〉 ∈ LPSk−1

Pk−1
, �v � �pk

}
, (5)

LPSk−1
Pk−1

�� = {
s|s = 〈[l, k − 1], �v〉 ∈ LPSk−1

Pk−1
, ∃ j ∈ [1, d] such that �v[ j] > �pk[ j]

}
. (6)

For the running example, LPS5
P5

is divided into LPS5
P5

�= {s1 =〈[1, 5], (10, 10)〉} and

LPS5
P5

�� = {s2 =〈[2, 5], (30, 20)〉, s3 =〈[3, 5], (30, 30)〉, s4 = 〈[5, 5], (50, 30)〉}.
—Compute LPSk−1

P from LPSk−1
Pk−1

: We can prove that LPSk−1
P is equivalent to LPSk−1

Pk−1

��
,

given by the following property.

PROPERTY 8. LPSk−1
P = LPSk−1

Pk−1

��
.

PROOF. Since Property 5 still holds, LPSk−1
P ⊆ LPSk−1

Pk−1
. Furthermore, LPSk−1

Pk−1

�
and

LPSk−1
Pk−1

��
disjointly partition LPSk−1

Pk−1
—that is, LPSk−1

Pk−1
= LPSk−1

Pk−1

� ∪ LPSk−1
Pk−1

��
and

LPSk−1
Pk−1

� ∩LPSk−1
Pk−1

�� = ∅. Therefore, we only need to prove that (1) none of the streaks

in LPSk−1
Pk−1

�
is in LPSk−1

P and (2) all streaks in LPSk−1
Pk−1

��
are in LPSk−1

P :

(1) ∀s ∈ LPSk−1
Pk−1

�
, s /∈ LPSk−1

P . Suppose that s = 〈[l, k − 1], �v〉. Its right-end extension
is s′ = 〈[l, k], �v′〉, where �v′[ j] = min(�v[ j], �pk[ j]) for j ∈ [1, d]. Since �v � �pk (by
Equation (5)), it follows that �v′ = �v and thus s′ � s. Hence, s cannot be an LPS in P.

(2) ∀s ∈ LPSk−1
Pk−1

��
, s ∈ LPSk−1

P . We prove this by contradiction. Suppose that s = 〈[l, k−
1], �v〉. Assume that s /∈ LPSk−1

P —that is, there exists s′ � s such that s′ = 〈[l′, r′], �v′〉,
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[l′, r′] ⊃ [l, k − 1], and �v′ � �v. By Equation (6), ∃ j ∈ [1, d] such that �v[ j] > �pk[ j].
Therefore, r′ = k−1; otherwise, r′ = k and �v′[ j] <= �pk[ j] < �v[ j], which contradicts
with �v′ � �v. From [l′, r′] ⊃ [l, k − 1] and r′ = k − 1, we get l′ < l, which, along with
s′ � s, contradicts with s ∈ LPSk−1

Pk−1
. The contradictions prove that s ∈ LPSk−1

P . �

—Compute LPSk
Pk

from LPSk−1
Pk−1

: We note that Lemma 2 still holds under multidi-
mensional sequence, except 〈[k, k], �pk〉, for each streak in LPSk

Pk
, its prefix streak is

in LPSk−1
Pk−1

. Hence, to produce LPSk
Pk

, we only need to consider the right-end exten-
sion of LPSk−1

Pk−1
and one extra streak 〈[k, k], �pk〉 that may belong to LPSk

Pk
as well.

Again, we consider the two disjoint partitions of LPSk−1
Pk−1

, LPSk−1
Pk−1

�
and LPSk−1

Pk−1

��
,

respectively.

(1) The right-end extensions of all streaks inLPSk−1
Pk−1

�
belong toLPSk

Pk
, by the following

property.

PROPERTY 9. ∀s ∈ LPSk−1
Pk−1

�
, its right-end extension s′ ∈ LPSk

Pk
.

PROOF. We prove by contradiction. Suppose that s = 〈[l, k − 1], �v〉. Its right-end
extension is s′ = 〈[l, k], �v′〉, where �v′[ j] = min(�v[ j], �pk[ j]) for j ∈ [1, d]. Since s ∈
LPSk−1

Pk−1

�
, �v � �pk. Therefore, �v′ = �v. If s′ /∈ LPSk

Pk
, then there exists s′′ = 〈[l′′, k], �v′′〉 such

that s′′ � s′ (i.e., l′′ < l, and �v′′ � �v′). Since s′′ and s′ have the same right end of interval
and l′′ < l, �v′′ � �v′. Therefore, �v′′ = �v′ = �v. Consider s′′′ = 〈[l′′, k − 1], �v′′′〉—that is, s′′ is
the right-end extension of s′′′. �v′′′ � �v′′ by definition of right-end extension. Therefore,
�v′′′ � �v and thus s′′′ � s (since l′′ < l). This contradicts with s ∈ LPSk−1

Pk−1
. �

(2) Given a streak inLPSk−1
Pk−1

��
, its right-end extension does not always belong toLPSk

Pk
.

For a single-dimensional sequence, LPSk−1
Pk−1

was similarly partitioned into LPSk−1
Pk−1

<

and LPSk−1
Pk−1

≥
. Among the streaks in LPSk−1

Pk−1

≥
, the right-end extension of the longest

streak belongs to LPSk
Pk

. If LPSk−1
Pk−1

≥
is empty, then 〈[k, k], pk〉 belongs to LPSk

Pk
.

For a multidimensional sequence, multiple but not necessarily all streaks inLPSk−1
Pk−1

��

can be right extended to streaks in LPSk
Pk

. This can be simply proven by using the

running example. Recall that LPS5
P5

� = {s1 = 〈[1, 5], (10, 10)〉} and LPS5
P5

�� = {s2 =
〈[2, 5], (30, 20)〉, s3 = 〈[3, 5], (30, 30)〉, s4 = 〈[5, 5], (50, 30)〉}. Since �p6 = (20, 30), the
right-end extensions of s2, s3, and s4 are s′

2 = 〈[2, 6], (20, 20)〉, s′
3 = 〈[3, 6], (20, 30)〉, and

s′
4 = 〈[5, 6], (20, 30)〉, respectively. It is clear that s′

2, s′
3 ∈ LPS6

P6
and s′

4 /∈ LPS6
P6

since
s′

3 � s′
4.

5.3.2. Efficient Computation. Based on the discussion in Section 5.3.1, in computing
LPSk

Pk
and LPSk−1

P from LPSk−1
Pk−1

, the key is to partition LPSk−1
Pk−1

into LPSk−1
Pk−1

�
(which

equals LPSk−1
P ) and LPSk−1

Pk−1

��
. The right-end extensions of all streaks in LPSk−1

Pk−1

�
be-

long to LPSk
Pk

, and all remaining streaks in LPSk
Pk

are formed by right-end extensions

of streaks in LPSk−1
Pk−1

��
. Next, we discuss an efficient method of partitioning LPSk−1

Pk−1

and identifying streaks in LPSk−1
Pk−1

��
that should be extended to streaks in LPSk

Pk
.
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—Partition LPSk−1
Pk−1

into LPSk−1
Pk−1

�
and LPSk−1

Pk−1

��
: Suppose that there are m streaks in

LPSk−1
Pk−1

, which are s1 = 〈[l1, k − 1], �v1〉, . . . , sm = 〈[lm, k − 1], �vm〉, where l1 < · · · < lm.

We can prove that there exists t such that LPSk−1
Pk−1

� = {s1, . . . , st} and LPSk−1
Pk−1

�� =
{st+1, . . . , sm}. (Two special cases are LPSk−1

Pk−1

� = ∅ (i.e., t = 0) and LPSk−1
Pk−1

�� = ∅ (i.e.,
t = m).) The proof is sketched as follows. Since l1 < · · · < lm, for any dimension j, the
value �vi[ j] monotonically increases by i (not necessarily strictly increasing)—that is,
�v1[ j] ≤ �v2[ j] ≤ · · · ≤ �vm[ j]. It follows that �v1 ≺ �v2 ≺ · · · ≺ �vm. (Note that �vi �= �vi+1
for any i; otherwise, si would dominate si+1, which contradicts with the notion that
they all are LPSs in Pk−1.) Given si1 ∈ LPSk−1

Pk−1

�
and si2 ∈ LPSk−1

Pk−1

��
, it must be that

i1 < i2, otherwise i1 > i2, �vi1 � �vi2 and thus ∀ j, �vi1 [ j] ≥ �vi2 [ j], which contradicts with
Equations (5) and (6).

—Identify streaks in LPSk−1
Pk−1

��
that should be extended to streaks in LPSk

Pk
: To find all of

those right-end extensions of streaks in LPSk−1
Pk−1

��
that belong to LPSk

Pk
, consider the

aforementioned partitioning of LPSk−1
Pk−1

into LPSk−1
Pk−1

� = {s1, . . . , st} and LPSk−1
Pk−1

�� =
{st+1, . . . , sm}, where the mstreaks sm, . . . , s1 are decreasingly ordered by the left ends
of their intervals. For each si = 〈[li, k − 1], �vi〉 ∈ LPSk−1

Pk−1

��
, its right-end extension is

s′
i = 〈[li, k], �v′

i〉. The following important property tells us that if s′
i ⊀ s′

i−1, then s′
i

belongs to LPSk
Pk

.

PROPERTY 10. For each streak si = 〈[li, k − 1], �vi〉 ∈ LPSk−1
Pk−1

��
, its right-end extension

is s′
i = 〈[li, k], �v′

i〉. s′
i ∈ LPSk

Pk
if and only if s′

i ⊀ s′
i−1.

PROOF. It is apparent that if s′
i ≺ s′

i−1, then s′
i /∈ LPSk

Pk
. Thus, our focus is to prove

s′
i ∈ LPSk

Pk
if s′

i ⊀ s′
i−1, by contradiction. Assume that s′

i ⊀ s′
i−1 but s′

i /∈ LPSk
Pk

. Hence,
∃ j < i − 1 and s′

j � s′
i (and thus �v′

j � �v′
i). Since lj < li, �v′

j � · · · � �v′
i−1 � �v′

i. Therefore,
�v′

j = · · · = �v′
i−1 = �v′

i. Hence, s′
i−1 � s′

i, which contradicts with s′
i ⊀ s′

i−1. �

Based on the properties discussed in Sections 5.3.1 and 5.3.2 so far, we design an
efficient method to compute LPSk

Pk
and LPSk−1

P from LPSk−1
Pk−1

. The current skyline
points (prominent streaks) after the (k− 1)-th element is encountered are stored in the
aforementioned KD-tree index structure. The streaks in LPSk−1

Pk−1
, sm, . . . , s1, are stored

in memory by the decreasing order of the left ends of their intervals. Since they have
the same right ends of intervals, only the left ends and the corresponding vectors are
stored. When the k-th element �pk arrives, this method considers the streaks si and
their right-end extensions s′

i, starting from i = m+ 1 and iteratively decreasing i by
1. (For i = m+ 1, the special streak in consideration is s′

m+1 = 〈[k, k], �pk〉.) According
to Property 10, the method only requires comparing s′

i with its predecessor s′
i−1. If

s′
i ≺ s′

i−1, then si is removed from the memory. Otherwise, s′
i belongs to LPSk

Pk
and thus

si is updated to s′
i in memory. More specifically, the vector �vi of si needs to be updated

to �v′
i, by �v′

i[ j] = min(�vi[ j], �pk[ j]) for j ∈ [1, d]. The method goes on until i = t such that
�vt � �pk. At that moment, the method will take the following actions:

—The streaks scanned so far (sm, . . . , st+1) form LPSk−1
Pk−1

��
, which is equivalent to

LPSk−1
P . All remaining streaks in LPSk−1

Pk−1
(st, . . . , s1) form LPSk−1

Pk−1

�
.
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ALGORITHM 9: Progressive Computation of LPSk
Pk

on Multidimensional Sequences

Input: LPSk−1
Pk−1

and �pk

Output: LPSk
Pk

// When it starts, stack lps consists of streaks in LPSk−1
Pk−1

.
1 temp stack ← an empty stack
2 while ! lps.isempty() do
3 if lps.top().�v � �pk then
4 break
5 else
6 s = 〈[ls, k − 1], �vs〉 ← lps.pop()
7 s′ ← 〈[ls, k], �v′

s〉, where �v′
s = (min(�vs[1], �pk[1]), . . . , min(�vs[d], �pk[d]))

//right-end extension of s
8 if lps.isempty() then
9 temp stack.push(s′)

10 else
11 q = 〈[lq, k − 1], �vq〉 ← lps.top()
12 q′ ← 〈[lq, k], �v′

q〉, where �v′
q = (min(�vq[1], �pk[1]), . . . , min(�vq[d], �pk[d]))

//right-end extension of q
13 if q′ � s′ then
14 temp stack.push(s′)
15 while ! temp stack.isempty() do
16 lps.push(temp stack.pop())
17 if lps.isempty() or lps.top().�v � �pk then
18 lps.push(〈[k, k], �pk〉)

// Now, lps contains all the streaks in LPSk
Pk

.

ALGORITHM 10: Computing LPSk−1
P and LPSk

Pk
on Multidimensional Sequences

Input: LPSk−1
Pk−1

and �pk

Output: LPSk−1
P and LPSk

Pk

// Insert the following line before Line 1 in Algorithm 9.
1 LPSk−1

P ← ∅
// Insert the following line after Line 6 in Algorithm 9.

2 LPSk−1
P ← LPSk−1

P ∪ {s}

—The streaks in LPSk−1
P are candidate prominent streaks. They are compared with

current skyline points by the aforementioned range queries over the KD-tree on the
skyline points. Nondominated candidates are inserted into the KD-tree.

—For all remaining streaks in the memory (i.e., LPSk−1
Pk−1

�
), their right-end extensions

belong to LPSk
Pk

. Since their vectors are all dominated by or equivalent to �pk, their
corresponding vectors do not need to be updated. At this moment, all streaks ofLPSk

Pk

are stored in memory by the decreasing order of the left ends of their intervals.

More concretely, Algorithms 3 and 5 remain unchanged, and Algorithms 4 and 6 are
replaced by Algorithms 9 and 10, respectively.

5.3.3. A Note on “Curse of Dimensionality”. For a single-dimensional sequence with n ele-
ments, LLPS produces at most n candidates (i.e., LPSs), according to Property 4. This
upper bound guarantees LLPS to be an efficient linear-time algorithm. However, the

ACM Transactions on Knowledge Discovery from Data, Vol. 8, No. 2, Article 9, Publication date: May 2014.



Discovering General Prominent Streaks in Sequence Data 9:23

same property does not hold for multidimensional sequences. Consider an extreme case
that is a two-dimensional n-element sequence ( �p1, . . . , �pn), where �pi = (i, n− i). It is not
hard to prove that all n(n+1)

2 possible streaks in this sequence are prominent streaks
and thus automatically are LPSs. This represents the worst case, in which nothing
beats the brute-force baseline method.

Although the worst case indicates the rather notorious “curse of dimensionality,” our
empirical results on multiple datasets are much more encouraging. The results show
that the number of prominent streaks and the execution time of LLPS do not increase
exponentially by the dimensionality of data. This is mainly because data values
fluctuate and are correlated. We investigate these results in more detail in Section 6.

6. EXPERIMENTS

We report and analyze experimental results in this section. The algorithms were imple-
mented in Java. The experiments were conducted on a server with four 2.00GHz Intel
Xeon E5335 CPUs running Ubuntu Linux. The limit on the heap size of Java Virtual
Machine was set at 512MB. We discuss the results on basic and general prominent
streak discovery in Section 6.1 and Section 6.2, respectively.

6.1. Experimental Results on Basic Prominent Streak Discovery

We used multiple real-world datasets, including time series data library,3 Wikipedia
traffic statistics dataset,4 NYSE exchange data,5 AOL search engine log,6 and FIFA
World Cup 98 Web site access log.7 These datasets cover a variety of application
scenarios, including meteorology, hydrology, finance, Web log, and network traffic.
Table I shows the information of 12 data sequences from these datasets that we used
in experiments. For each data sequence, we list its name, length, and the number of
prominent streaks in the sequence. Each data sequence was stored in a data file.

Examples of Interesting Prominent Streaks Discovered
From 1985 to 1989, there had been more than 1,000 consecutive trading days with
morning gold price greater than $300. During this period, there had been a streak of
400 days with a price of more than $400, although the $500 price only lasted 2 days at
most.

In Melbourne, Australia, during the years between 1981 and 1990, the weather had
been pleasant. There had been more than 2,000 days with minimal temperature above
zero, and the streak was not ending. (We do not have data beyond 1990.) The longest
streak during which the temperature hit above 35 degrees Celsius is 6 days. It was in
the summer of the year 1981.

More than half of the prominent streaks that we found in the traffic data of the Lady
Gaga Wikipedia page were around September 12, when she became a big winner in the
MTV Video Music Awards (VMA) 2010. During that time, the page had been visited by
at least 2,000 people in every hour for almost 4 days.

Number of Candidate Streaks
The three algorithms for candidate streak generation, namely Baseline (Algorithm 1),
NLPS (Algorithm 3), and LLPS (Algorithm 5), differ by the ways that they produce
candidates and thus the numbers of produced candidates. Table II shows the total

3http://robjhyndman.com/TSDL/.
4http://dammit.lt/wikistats/.
5http://www.infochimps.com/datasets/nyse-daily-1970-2010-open-close-high-low-and-volume.
6http://gregsadetsky.com/aol-data/.
7http://ita.ee.lbl.gov/html/contrib/WorldCup.html.
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Table I. Data Sequences Used in Experiments on Basic Prominent Streak Discovery

Prominent
Name Length Streaks (#) Description
Gold 1,074 137 Daily morning gold price in US dollars, 01/1985–03/1989
River 1,400 93 Mean daily flow of Saugeen River near Port Elgin,

01/1988–12/1991
Melb1 3,650 55 The daily minimum temperature of Melbourne, Australia,

1981–1990
Melb2 3,650 58 The daily maximum temperature of Melbourne, Australia,

1981–1990
Wiki1 4,896 58 Hourly traffic to http://en.wikipedia.org/wiki/Main_page,

04/2010–10/2010
Wiki2 4,896 51 Hourly traffic to http://en.wikipedia.org/wiki/Lady_gaga,

04/2010–10/2010
Wiki3 4,896 118 Hourly traffic to http://en.wikipedia.org/wiki/Inception_

(film), 04/2010–10/2010
SP500 10,136 497 S&P 500 index, 06/1960–06/2000
HPQ 12,109 232 Closing price of HPQ in NYSE for every trading day,

01/1962–02/2010
IBM 12,109 198 Closing price of IBM in NYSE for every trading day,

01/1962–02/2010
AOL 132,480 127 Number of queries to AOL search engine in every minute

over 3 months
WC98 7,603,201 286 Number of requests to World Cup 98 Web site in every

second, 04/1998–07/1998

Table II. Number of Candidate Streaks, Basic Prominent Streak Discovery

Name Baseline NLPS LLPS
Gold 5.77 × 105 6.04 × 104 1.05 × 103

River 9.81 × 105 2.18 × 104 1.33 × 103

Melb1 6.66 × 106 4.47 × 104 3.50 × 103

Melb2 6.66 × 106 4.28 × 104 3.49 × 103

Wiki1 1.20 × 107 7.16 × 104 4.79 × 103

Wiki2 1.20 × 107 5.77 × 104 4.75 × 103

Wiki3 1.20 × 107 7.31 × 104 4.70 × 103

SP500 5.14 × 107 1.69 × 106 9.98 × 103

HPQ 7.33 × 107 5.24 × 105 1.08 × 104

IBM 7.33 × 107 6.97 × 105 1.13 × 104

AOL 8.78 × 109 3.53 × 106 1.20 × 105

WC98 2.89 × 1013 1.78 × 108 6.69 × 106

number of candidate streaks considered by each algorithm on each data sequence.
The baseline algorithm produces an extremely large number of candidates since it
enumerates all possible streaks—for example,

(7603202
2

) = 2.89 × 1013 for WC98. By
contrast, NLPS only needs to consider

⋃
1≤k≤|P| LPSk

Pk
, which is a superset of the real

prominent streaks PSP but a much smaller subset of all possible streaks SP . For
instance, the number of candidate streaks by NLPS is 1.78 × 108 for WC98, which is 5
orders of magnitude smaller than what Baseline considers. LLPS further significantly
reduces the number of candidates by only considering LPSs. For example, there are
6.69 × 106 LPSs in WC98, which is about 30 times smaller than 1.78 × 108. Note that
the number of LPSs for LLPS is bounded by sequence length (Property 4), which is
verified by Table II.
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Table III. Execution Time (in Milliseconds), Basic Prominent Streak Discovery

Name Baseline NLPS LLPS
Gold 183 122 13
River 126 84 19
Melb1 385 101 36
Melb2 384 101 35
Wiki1 670 105 46
Wiki2 646 97 46
Wiki3 632 126 48
SP500 4,453 789 116
HPQ 6,285 338 101
IBM 4,228 377 135
AOL 290,744 752 201
WC98 >1 hour 38,999 3,012

Execution Time
The number of candidate streaks directly determines the efficiency of our algorithms.
In Table III, we report the execution time of our algorithms using the three candidate
streak generation methods (Baseline, NLPS, LLPS) for all 12 data sequences. For
skyline operation, we implemented the sorting-based, external-memory sorting-based,
and BST-based skyline methods mentioned in Section 1. Under these different skyline
methods, Baseline, NLPS, and LLPS perform and compare consistently. Therefore,
in Table III, we only report the results for implementations based on the BST-based
skyline method, due to space limitations. The reported execution time is in milliseconds
and is the average of five runs.

When reporting the execution time of these algorithms, we excluded data loading
time (i.e., the time spent on just reading each data file). This is because data loading
time is dominated by processing time of the algorithms once the data file gets large. In
our experiments, WC98 cost 1s to load, whereas the loading time of all other datasets
was below 30ms.

In Table III, we use “>1 hour” to denote the execution time when an algorithm could
not finish within 1 hour (i.e., 3,600,000ms). This lower bound is sufficient in showing
the performance difference of the various algorithms.

With regard to the comparison of Baseline, NLPS, and LLPS, it is clear from Table III
that LLPS outperforms NLPS and that both NLPS and LLPS are far more efficient
than Baseline. This is exactly due to the large gap in the number of candidate streaks
(shown in Table II), which in turn determines the number of comparisons performed
during skyline operations.

A Closer Look
To have a better understanding of the experimental results, we take a close look at
the SP500 data sequence. Figure 4(a) shows the data sequence itself. We see that the
sequence is almost monotonically increasing at the coarse grain level. Due to that, the
number of prominent streaks found in SP500 (497, as shown in Table I) is the most
among all of the data sequences. We also visualize the prominent streaks in SP500 in
Figure 4(b), where the x-axis is for interval length and the y-axis is for minimal value
in the interval.

In Table II, we have seen the huge difference among Baseline, NLPS, and LLPS
in total number of candidate streaks. These three algorithms all generate candidates
progressively. Therefore, in Figure 4(c), we show for each algorithm the number of new
candidate streaks produced at every value position of the data sequence. The figure
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Fig. 4. Detailed results on SP500, basic prominent streak discovery.

clearly shows the superiority of LLPS, as it always generates orders of magnitude less
candidates at each position.

The BST-based skyline method maintains a dynamic skyline, as a BST, in memory.
The size of this tree affects the efficiency of tree operations, such as inserting and
deleting a streak. Figure 4(d) shows the size of the dynamic skyline along the sequence
of SP500 by each algorithm. The curves for Baseline and NLPS overlap since they both
store PSPk, at every position k, in the dynamic skyline. On the contrary, LLPS does not
need to store some streaks in PSPk; hence, the tree size is much smaller than that for
Baseline/NLPS when the sequence is almost constantly growing in the second half of
SP500.

In Figure 5, we show the detailed results on WC98 data, which are similar to the
results on SP500 but are also different on several aspects. The data sequence fluctu-
ates. Hence, there are less candidate streaks by NLPS and LLPS, which makes the gap
between them and Baseline much bigger. For the same reason, the size of the dynamic
skyline is almost identical for the three algorithms. Note that Figure 5(b) uses loga-
rithmic scale on the x-axis, because the very long streaks would otherwise make most
other streaks cluttered to the left if linear scale is used.

Monitoring Prominent Streaks
In Section 4, we discussed how to monitor the prominent streaks as a data sequence
evolves and new data values come. The adaptation of LLPS for monitoring purpose was
shown in Algorithm 7. This algorithm can control at which positions the prominent
streaks (so far) need to be reported.

Take AOL and WC98 as examples. Figure 6 shows the execution time of Algorithm 7.
The x-axis represents the sequence position, and the y-axis is for the total execution
time by that position. There are five curves in each figure, corresponding to five different
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Fig. 5. Detailed results on WC98, basic prominent streak discovery.

Fig. 6. Cumulative execution time at various positions for different reporting frequencies, basic prominent
streak discovery.

frequencies of reporting prominent streaks. For instance, LLPS-1 means that whenever
a new data entry comes, all of the prominent streaks so far are reported; LLPS-16
means that the prominent streaks are requested at every 16 data entries. As discussed
in Section 4, LLPS-1 is identical to NLPS (Algorithm 3), and LLPS-n is identical to
LLPS (Algorithm 5), where n is the sequence length when it does not evolve anymore.
Figures 6(a) and 6(b) clearly show that the total execution time of LLPS-i increases
as the reporting frequency increases (i.e., reporting interval i decreases). Figures 7(a)
and 7(b) further show how the total execution time changes along different reporting
intervals. We can see that the execution time drops rapidly at the beginning and quickly
reaches near-optimal value even when the frequency is still fairly high (e.g., reporting
the prominent streaks at every 16 entries.)
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Fig. 7. Total execution time by reporting frequencies, basic prominent streak discovery.

Table IV. Number of Prominent Streaks and Execution Time (in Milliseconds),
Top-5 Prominent Streaks

Name
Prominent Streaks

(#) Baseline NLPS LLPS
Gold 147 1884 348 44
River 144 6.81 × 104 275 57
Melb1 160 6.06 × 107 572 96
Melb2 160 3.01 × 106 445 150
Wiki1 181 3.68 × 107 1369 140
Wiki2 115 1.88 × 107 565 172
Wiki3 172 1.05 × 106 473 136
SP500 516 7.09 × 106 13,700 270
HPQ 251 >10 hours 3,211 178
IBM 232 >10 hours 5,914 229
AOL 250 >10 hours 26,000 798
WC98 409 >10 hours >10 hours 13,300

6.2. Experimental Results on General Prominent Streak Discovery

In this section, we discuss the results on top-k, multisequence, and multidimensional
prominent streak discovery. At the end of this section, we also present the results from
an experiment that put together these different extensions.

Top-k Prominent Streaks
The experiments on top-k prominent streaks were conducted on the same datasets dis-
cussed in Section 6.1. For each dataset, Table IV shows the number of top-5 prominent
streaks (i.e., KPSP in Definition 5) and the execution time of the extended Baseline,
NLPS, and LLPS algorithms. Note that the number of candidate streaks shown in
Table II remains the same, as the same candidate streak generation methods are used
for top-k prominent streaks, as discussed in Section 5.1.

As Table IV shows, in comparison with the execution time in Table III (i.e., the
time of discovering top-1 prominent streaks), the execution time of Baseline increased
by one or more orders of magnitude, whereas the performance of NLPS and LLPS
was degraded by less than one order of magnitude in most cases. This is explained
as follows. Finding top-k prominent streaks incurs higher cost of skyline operation
than finding top-1 prominent streaks. More specifically, the cost of skyline operation is
determined by the number of dominance comparisons between candidate streaks and
streaks in the dynamic skyline. Therefore, the number of comparisons increases by both
the number of candidate streaks and the size of the dynamic skyline. In comparison
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Fig. 8. Detailed results on SP500 and AOL, top-1 versus top-5 prominent streaks.

with top-1, finding top-k prominent streaks requires maintaining LPSs with as many
as k − 1 dominators, which increases the size of dynamic skyline and thus incurs
larger cost. For example, a dominator search for a candidate cannot terminate until
the number of dominators reaches k, whereas the search terminates immediately in
top-1 algorithms once a dominator is found. The more candidate streaks there are, the
larger the increment of skyline operation cost (from top-1 to top-k) grows. This further
explains why the performance of Baseline was degraded the most.

Figure 8 shows some interesting detailed results on two different sequences. Since
sequence SP500 increases almost monotonically, an LPS that is not globally prominent
most likely has a relatively large number of dominators. Hence, the size of dynamic
skyline in top-5 prominent streak discovery is only slightly larger than that in top-
1. This explains Figure 8(c). On the contrary, for sequence AOL, the size of dynamic
skyline for top-5 is about twice the size of top-1 (Figure 8(d)). This is because sequence
AOL fluctuates. The prominent streaks have different right ends of intervals due to the
fluctuation. This also explains why the sizes of dynamic skylines in Baseline, NLPS,
and LLPS do not differ much from each other in this sequence. However, as Table IV
shows, their differences on execution time are still significant because NLPS and LLPS
generate much less candidates than Baseline does.

By Definition 5, PSP ⊆ KPSP—that is, all prominent streaks are also top-k
prominent streaks. This is clearly shown in Figures 8(a) and 8(b). Furthermore,
KPSP ⊆ LPSP—that is, top-k prominent streaks must be LPSs as well. Therefore,
the set KPSP grows by k and stops growing after k reaches a certain value, when all
streaks in LPSP are included in KPSP . This is demonstrated by Figure 9(a), in which
the number of prominent streaks in sequence SP500 increases by k until k reaches
about 10,000. As a result, total execution time also changes in sync with the number
of prominent streaks, as shown in Figure 9(b).
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Fig. 9. Number of prominent streaks and execution time, LLPS on SP500, top-k prominent streaks, vary-
ing k.

Fig. 10. Cumulative execution time at various positions for different reporting frequencies, top-5 prominent
streak discovery.

Fig. 11. Total execution time by reporting frequencies, top-5 prominent streak discovery.

We also experimented with monitoring top-k prominent streaks. The results are
shown in Figures 10 and 11, which exhibit patterns of execution time similar to the
patterns in Figures 6 and 7 for monitoring top-1 prominent streaks.

Multisequence Prominent Streaks
We used two datasets for experiments on multisequence prominent streak discov-
ery. One (Wiki) is the hourly traffic to Ivy League universities’ Wikipedia page4, one
sequence per university. The other dataset (NBA1) contains 1,225 sequences, one se-
quence per NBA player. Each sequence lists the scores of a player in all of the games
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Table V. Data Sequences Used in Experiments on Multisequence Prominent Streak Discovery

Name Sequences (#)
Average
Length

Prominent
Streaks (#) Description

NBA1 1,225 281 28 Points scored by all NBA players from
1991–2004

Wiki 8 14,454 59 Hourly traffic to the Wikipedia pages of Ivy
League universities

Table VI. Number of Candidate Streaks, Multisequence Prominent
Streak Discovery

Name Baseline NLPS LLPS
NBA1 9.41 × 107 1.23 × 106 3.31 × 105

Wiki 8.36 × 108 1.23 × 106 1.86 × 105

Table VII. Execution Time (in Milliseconds), Multisequence Prominent
Streak Discovery

Name Baseline NLPS LLPS
NBA1 3,436 310 292
Wiki 33,537 275 190

that he played from 1991 to 2004.8 The characteristics of these two datasets are shown
in Table V, including the number of sequences, the average sequence length, and the
number of prominent streaks. Tables VI and VII show the number of candidate streaks
and the execution time, respectively, for Baseline, NLPS, and LLPS. The results are
very similar to that in Tables II and III. This is because the process of multisequence
prominent streak discovery is not very different from its single-sequence counterpart.

For dataset NBA1, Table VIII shows the distribution of players by the number of
prominent streaks contributed by them. All 29 prominent streaks (i.e., NBA scoring
records in the period from 1991 to 2004) come from merely 10 different players. Table IX
shows the detailed records. One interesting observation from the table is that Karl
Malone and John Stockton, two of the healthiest NBA players, had scored in two
longest streaks of games. Another example is that Allen Iverson is the only one who
scored at least 20 points in more than 50 consecutive games.

Multidimensional Prominent Streaks
We used three datasets for experiments on multidimensional prominent streak discov-
ery, listed in Table X. The first dataset is the game log of NBA player Karl Malone from
the 1991 to 2004 seasons.8 This is a sequence of 986 elements, each of which represents
Malone’s performance in a game on six performance dimensions. The second dataset
is the 2003–2011 Texas motor vehicle crash statistics,9 a five-dimensional sequence of
3,287 elements, where each element is for 1 day and represents the daily counts of
crashes, injuries, fatalities, and so on. The last dataset is the historical NASDAQ stock
data of Apple Inc. from 1970 to 2010.10 In this 6,411-element sequence, each element
is for a trading day and contains the opening price, change ratio, and trading volume
of the stock of Apple Inc. on that day.

The number of candidate streaks and the execution time by Baseline, NLPS, and
LLPS are shown in Tables XI and XII. Figure 12 further shows detailed experimental

8http://www.databasebasketball.com/index.htm.
9http://www.txdot.gov/government/enforcement/annual-summary.html.
10http://www.infochimps.com/datasets/nasdaq-exchange-daily-1970-2010-open-close-high-low-and-volume.
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Table VIII. Distribution of Players by Number
of Prominent Streaks

Number of Prominent Streaks Number of Players
0 1,215
1 6
3 1
4 1
5 1
10 1

Table IX. Multisequence Prominent Streaks in Dataset NBA1

Length Minimal Value Players
1 71 David Robinson
2 51 Allen Iverson; Antawn Jamison
4 42 Kobe Bryant
9 40 Kobe Bryant
13 35 Kobe Bryant
14 32 Kobe Bryant
16 30 Kobe Bryant
17 27 Michael Jordan
27 26 Allen Iverson
34 24 Tracy McGrady
45 21 Allen Iverson
57 20 Allen Iverson
74 19 Shaquille O’Neal
94 18 Shaquille O’Neal
96 17 Karl Malone
119 16 Karl Malone
149 15 Karl Malone
159 14 Karl Malone
263 13 Karl Malone
357 12 Karl Malone
527 11 Karl Malone
575 10 Karl Malone
758 7 Karl Malone
858 6 Shaquille O’Neal
866 2 Karl Malone
932 1 John Stockton
1,185 0 Jim Jackson

Table X. Data Sequences Used in Experiments on Multidimensional Prominent Streak Discovery

Prominent Dimensions
Name Length Streaks (#) (#) Description
Malone 986 640 6 1991–2004 game log of Karl Malone

(minutes, points, rebounds, assists, steals,
blocks)

Crashes 3,287 1,493 5 2003–2011 Texas motor vehicle crash
statistics (crashes and injuries by date)

AAPL 6,411 2,616 3 NASDAQ stock data of Apple Inc.
from 1970 to 2010, on daily values of
opening price, change ratio
((open − close)/open × 100%) and trading
volume
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Table XI. Number of Candidate Streaks, Multidimensional Prominent Streak Discovery

Name Baseline NLPS LLPS
Malone 4.87 × 105 1.27 × 104 4.47 × 103

Crashes 5.40 × 106 6.95 × 105 1.82 × 104

AAPL 2.06 × 107 4.77 × 105 4.08 × 105

Table XII. Execution Time (in Milliseconds), Multidimensional Prominent Streak Discovery

Name Baseline NLPS LLPS
Malone 4,575 336 180
Crashes 1.08 × 105 1,113 326
AAPL 5.65 × 105 9,997 557

Fig. 12. Detailed results on AAPL, multidimensional prominent streak discovery.

results on dataset AAPL. The observations made on these results are similar to those
for basic, top-k, and multisequence prominent streak discovery.

We also investigated how the number of prominent streaks and total execution time
of LLPS increase by the dimensionality of data, using dataset Malone. As the boxplots
in Figure 13 show, these measures do not increase exponentially by data dimensional-
ity, at least under small dimensionality such as 6. This indicates that while the curse
of dimensionality can raise concerns, the empirical results are much more encourag-
ing, partly because data values fluctuate and thus the appearance of a small value
terminates many prominent streaks. Furthermore, data values are correlated, which-
practically reduces data dimensionality. Finally, the results are for six dimensions at
most. We note that arguably the prominent streaks found in the real world, such as
the ones in Section 1, mostly would not have more than six dimensions.
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Fig. 13. Experiments on increasing dimensionality.

Table XIII. Data Sequences Used in Experiments on Top-5 Multisequence Multidimensional
Prominent Streak Discovery

Name
Sequences

(#)
Average
Length

Dimensions
(#)

Prominent
Streaks (#) Description

NBA2 1,185 290 6 10,867 1991–2004 game log of all
NBA players (minutes,
points, rebounds, assists,
steals, blocks)

Table XIV. Number of Candidate Streaks, Top-5 Multisequence Multidimensional
Prominent Streak Discovery

Name Baseline NLPS LLPS
NBA2 9.41 × 107 2.98 × 106 8.76 × 105

Putting It Together: Top-k Prominent Streaks on Multiple
Multidimensional Sequences
We also used dataset NBA2 (Table XIII) for experiments on discovering top-k prominent
streaks from multiple multidimensional sequences. This dataset contains 1,185 six-
dimensional sequences, each of which corresponds to the game log of an NBA player
from 1991 to 2004. One of the sequences is the aforementioned dataset Malone.

Figure 14 shows that distribution of prominent streaks by length. It is clear that
the distribution follows the power law, because the minimal value vector for a streak
takes the minimal value on each dimension from all elements. The longer a streak
is, the smaller the values in its minimal value vector become. Therefore, it is difficult
for a long streak to stand out as prominent. Figure 15 shows detailed experimental
results on this dataset that show similar patterns to those observed for aforementioned
experiments.

7. CONCLUSION AND FUTURE WORK

In this article, we study the problem of discovering prominent streaks in sequence
data. A prominent streak is a long consecutive subsequence consisting of only large
(small) values. We propose efficient methods based on the concept of LPS. We prove
that prominent streaks are a subset of LPSs and that the number of LPSs is less
than the length of a data sequence. Our linear LPS-based method guarantees to
consider only LPSs, thus achieving significant reduction in candidate streaks. The
proposed properties and algorithms are also extended for discovering general top-k,
multisequence, and multidimensional prominent streaks. The results of experiments
over multiple real datasets verified the effectiveness of the proposed methods.
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Table XV. Execution Time (in Milliseconds), Top-5 Multisequence Multidimensional
Prominent Streak Discovery

Name Baseline NLPS LLPS
NBA2 1.39 × 107 4.33 × 105 1.14 × 105

Fig. 14. Distribution of prominent streaks by length.

Fig. 15. Cumulative execution time at various positions for different reporting frequencies, multidimen-
sional prominent streak discovery.

Prominent streak discovery provides insightful data patterns for data analysis in
many real-world applications and is an enabling technique for computational journal-
ism. Given its real-world usefulness and complexity, the research on prominent streaks
in sequence data opens a spectrum of challenging problems. Here we briefly outline
several future directions. First, a more general concept of prominent streak can be
pursued. For instance, finding conditional prominent streaks is about discovering con-
strains that make streaks prominent (e.g., “since June 2009” and “the month of July”
for the motivating example streaks in Section 1.) Second, prominent streaks can be
incorporated with the model of data cube [Gray et al. 1997]. Specifically, given a mul-
tidimensional sequence, the goal is to discover prominent streaks in not only the full
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space but also all possible subspaces. For example, given the NBA2 dataset used in
our experiments, we may want to find prominent streaks in spaces (points, rebounds),
(points, assists, blocks), and so on. Third, when there are many prominent streaks,
it is important to rank them by their interestingness so that a user can focus on the
top-ranked prominent streaks. Some important ranking criteria to consider include
streak length, number of similar prominent streaks in the dataset, and so on.
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