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ABSTRACT 
Morphologic appearance is one of intuitive diagnosis factors of 
mass lesions in breast imaging, and irregular shape is one of the 
most frequent appearances for malignant masses. Thus, an 
effective measure of morphological irregularity will provide a 
helpful reference to determine malignancy of breast masses. In 
this paper, a new measure based on Fourier Transform, named 
Fourier Irregularity Index (FII), was developed to provide a 
reliable malignant/benign classification factor. The experiment 
was conducted with 418 breast masses, including 190 malignant 
cases and 218 benign cases. Performance was assessed and 
compared among various methods using Receiver Operating 
Characteristics (ROC) analysis. The proposed measure in this 
study achieved malignant/benign classification accuracy of 96% 
with an area (Az) of 0.99 under the receiver operating 
characteristics (ROC) curve, which outperformed typical 
traditional approaches, such as Compactness (accuracy of 90%, Az 
= 0.96), Fractal Dimension (accuracy of 90%, Az = 0.95), Fourier 
Factor (accuracy of 90%, Az = 0.97), and Fractional Concavity 
(accuracy of 75%, Az = 0.65). 

Categories and Subject Descriptors 
I.4.7 [IMAGE PROCESSING AND COMPUTER VISION]: 
Feature Measurement –Feature representation, Size and shape, 
Texture.  

General Terms 
Measurement; Experimentation. 

Keywords 
Irregularity Measure, Fourier Irregularity Index, Shape Factor. 

1. INTRODUCTION 
Breast cancer is one of most commonly diagnosed cancer among 
American women. About 1 in 8 U.S. women (about 12%) will 
develop invasive breast cancer over the course of her lifetime[1]. 
It is believed that mammography is one of the most effective 
breast screening techniques that achieves the mortality reduction 

by early detection of breast cancer [2]. However, mammographic 
interpretation is a complicated task requiring considerable domain 
expertise. Earlier studies show that, 10%-25% of tumors are 
missed by the radiologists[3].  

It is usually interpreted as the evidence of breast tumor that a 
dense mass presents in the mammogram. Morphologic appearance 
is one of criteria to classify the type of masses or tumors. In 
describing mass shapes, substantial agreement between breast 
radiologists was seen when the mass shape was characterized as 
irregular (the Cohen’s kappa coefficient value is 0.68) [4]. A non-
uniformity of growth often leads to an irregular shape, often seen 
in carcinomas[5]. Thin, irregular calcifications with linear or 
branching morphology suggest filling of the lumen of a duct 
involved irregularly by breast cancer. A typical benign mass is 
round and smooth with a well-defined boundary. On the contrary, 
a typical malignant tumor is in irregular shape and rough with a 
blurry boundary. In medical field, most of time, it is important to 
derive medical properties from those shape characteristics instead 
of absolute shape. In other words, it is possible to distinguish 
benign masses from malignant tumors by examining their shape 
characteristics, or morphological irregularity.  

A few studies have examined the possibility of classifying breast 
masses based on the irregularity exhibited in their contour. As 
early as in [6-8], compactness measure is used to characterize the 
diffused or compact nature of calcifications, rather than 
roughness. A circumscribed/speculated classification rate of 
92.3% can be achieved by measuring the compactness of shapes 
[9]. However, compactness is limited to certain circumstance due 
to its sensitivity to noise along the border. For malignant tumors 
typically possess both concave and convex segments as well as 
microlobulations and prominent spicules, the fractional concavity 
(fcc) is used as a feature in pattern classification experiments [10]. 
Besides its high sensitivity (88.5%), fcc resulted in a poor 
specificity of 60.7% because it failed to look into the 
characteristics of the spicules in terms of their depth and 
narrowness. As an important tool of characterizing complex 
geometric form, fractal dimension (FD) is widely used as a shape 
feature. For example, FD is calculated to characterize the 
complexity of regions of interest (ROIs) in mammograms by Guo 
et al. [11]. Rangayyan et al. investigated four methods to compute 
the FD of the contours of breast masses, including the ruler 
method and the box counting method applied to 1D and 2D 
representation of the contour [12]. While FD methods themselves 
showed relatively good performance, the result also showed FD 
and fractional concavity (fcc) can compensate for each other’s 
weakness. However, the normalization procedure proposed in [12] 
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may cause loss of details along the border. The other drawback of 
FD is that it is insensitive to large structure indentations and 
protrusions [13]. Because of its popularity, Fourier Transform 
(FT) was introduced in image processing many years ago. One of 
interesting irregular measure based on FT, named Fourier Factor 
(FF)[14], believed that FF would give a small value if more 
energy is distributed in the high-frequency part (which means the 
shape has a rough boundary). The reported result show FF 
correctly classified 54 out of 64 benign calcifications (84.38%), 
and correctly classified 67 out of 79 malignant calcifications 
(84.81%).  In other biomedical fields, contour irregularity is also 
considered as a diagnosis reference. Lee et al.[13, 15] investigated 
several shape descriptors, such as compactness, FD and 
irregularity index, to study the irregularity of melanocytic lesion 
contour. Kikuchi et al. believes fractal geometry can be used to 
describe the pathological architecture of ovarian tumors[16]. 

Unfortunately, these approaches are either insensitive to structural 
features which leads to a poor sensitivity, or too sensitive to 
noises which results in a high false positive rate. The aim of our 
study is to present a novel effective method, named Fourier 
Irregularity Index (FII), to analyze the irregularity of breast mass 
contours. The experiment results show that it is possible to 
integrate our method into a computer-aided diagnosis (CAD) 
system as a reference to automatic diagnosis. 

The remainder of this paper is structured as follows. The 
following section details the algorithm for our new measures, 
named Fourier Irregularity Index (FII). The constituent of testing 
data set, the evaluation protocol, as well as the methods used to 
compare with our approach are briefly described in Section 3. 
Section 4 discusses our experiment results and Section 5 
concludes our study with a summary.  

2. FOURIER IRREGULARITY INDEX 
In order to measure irregularities of shapes, finding an appropriate 
shape descriptor is the first step. The shape descriptor we used in 
our study is called origin distance descriptor, which is defined as 
the radial distance from each contour point to the origin as a 
function of the index of the contour point. By examining the 
descriptor carefully, an interesting phenomenon can be observed 
that the origin distance changes more and faster if the shape has 
more roughness along the contour. In other words, the series has 
more high frequency parts in its frequency domain representation 
than those derived from smooth, round shapes. 
As one of the most popular and important time-frequency 
analytical tools, Fourier Transform is employed to investigate 
such phenomena in details. Before transforming origin distance 
descriptor into Fourier series, a simple normalization procedure is 
performed to the original coordinates: move the origin to left-top 
corner of the contour, as given in following equation: 

 �z�′ = [7�, 7	, … , 7B, … , 7�/	 ] (1) 

where 7B�~ �ℎ� ��ℎ ������� 7����, ��� 

7B =  (+′B, I′B) =  �+B − min
?

+?, IB − min
?

I?  " 

(+B, IB) �~ �ℎ� �������� ��ℎ ������� 7���� 
Suppose that N radial distances are derived from the normalized 
origin distance descriptor. The shape then may approximately be 
written as a time series r: 

 � = [��, �	, … , �B, … , ��/	] (2) 

where 
�B =  �+′B
 + I′B


   

Obviously, the sequence is periodic with each traversal (clockwise 
or counter-clockwise) of the complete boundary. According to the 
discrete-time Fourier Transform (DTFT) formula [17], series � 
can be transformed into its frequency domain representation: 

 J = [J�, J	, … , JB, … , J�/	] (3) 

where JB =  � �� ∙ �/?
¡B
��

�/	

�$�

  � = 0,1, . . A − 1  

The inverse discrete Fourier Transform (IDFT) is given by: 

 �B =  
1
A � JB ∙ �T?
¡B

��
�/	

�$�

 (4) 

As a round mass has high possibility to be benign, these shapes 
are defined as regular shapes, or the least irregular shapes, which 
should have a small irregularity. On the contrary, shapes are 
defined as irregular shapes if they change its origin radial distance 
rapidly. In order to meet these basic conceptions, the Fourier 
Irregularity Index (FII) is defined as: 

  �¢¢ =  1 −
∑ ℜB �⁄�/


B$	

∑ ℜB
�/

B$	

 (5) 

where ¥B =  ¦
JB

J	
¦   � = 1,2 … A

2§   

According to the definition, energy ¥B  will be distributed in 
different frequencies with respect to the radial distance variations. 
As we can see from the definition, the energy ¥B  of high-
frequency parts will be diluted due to the division by k. In other 
words, FII would have a big value if more energy distributed in 
high-frequency parts, which is true for rough shapes. Take case A 
(A_1284_1.LEFT_MLO in DDSM) and case B 
(B_3022_1.RIGHT_MLO in DDSM) as examples, case A is 
diagnosed as a benign breast mass with an oval shape, and case B 
as malignant breast mass with an irregular shape (architectural 
distortion). From Figure 1, we can see case B (dashed line) has 
more energy distributed in high frequency parts than case A (solid 
line) does. It matches the fact that contour B is rougher than 
contour A. 
We can summarize some characteristics of FII from above 
analysis: 

1) The range of FII lies in [0, 1]; 
2) FII yields small values for regular shapes like round or 

oval shapes, while big values for irregular shapes; 
3) The more energy distributed in high frequency 

components, the more irregular the shape would be, the 
larger the FII value would be.  

3. EVALUATION METHODOLOGY 

3.1 Testing data inputs 
In this section, the concept developed in this study is applied to a 
set of mammograms provided by the Digital Database for 
Screening Mammography (DDSM) [18]. There are about 2,500 
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studies in the database. Each study includes two images of each 
breast. Associated pixel-level “ground truth” information are 
available including the locations and types of suspicious regions, 
as well as patient information and image information. 
Abnormalities of abnormal cases are described in “OVERALY” 
files. Each abnormality has information of the lesion type, the 
assessment, the subtlety, the pathology and at least one outline. 
Besides mentioned information, the outlines for the suspicious 
regions are also derived from markings made on the film by an 
experienced radiologist. Each boundary is encoded in Freeman 
Chain Code of Eight Directions[19]. To be simple, only three 
types of shapes are included in the testing data set: round, oval 
and irregular. Totally 418 mass cases are investigated in our 
study, including 190 malignant cases and 228 benign cases.  

3.2 Evaluation protocol 
As a fundamental tool for diagnostic test evaluation, the Receiver 
Operating Characteristic (ROC) curve analysis is widely used in 
medical field. An ROC curve is a plot of a test’s sensitivity 
(plotted on the vertical axis), versus its False-Positive Rate (FPR), 
or 1-specificity (plotted on the horizontal axis)[20], where 
sensitivity and specificity are defined in Equation 6 and 7, 
respectively. Each point on the curve represents the sensitivity and 
FPR at a different decision threshold. The area under the curve, 
usually referred as the Az index, is an accepted way of evaluating 
diagnostic performance[21], where larger Az denotes higher 
performance. Perfect diagnostic accuracy is achieved if the ROC 
curve has an Az index of 1.0. 

 ~��~������I =
��~

��~ + �A~ (6) 

 ~7���Y����I =
�A~

�A~ + ��~ (7) 

where TP stands for true positive, FN for false negative, TN for 
true negative and FP for false positive. The sensitivity specifies 
the probability that the diagnostic test is negative for disease for 
a patient who truly does not have the disease, while the 
specificity specifies the probability that the diagnostic test is 
negative for disease for a patient who truly does not have the 
disease. 

3.3 Methods 
Four previously reported methods for analysis of breast messes in 
mammograms were implemented to perform a comparative 
analysis of FII as a factor for classification purpose. These four 
approaches are briefly described in the following subsections. 

3.3.1 Compactness 
Compactness is developed to measure how efficiently a contour 
encloses a given area. The following equation gives the definition 
of the normalized measure of Compactness (C)[22]. Since circles 
are the most compact 2D shapes, they have the smallest 
compactness of zero. A high compactness usually indicates the 
contour contains much roughness along the boundary, which may 
imply the malignance of a suspicious area[23]. 

 ` = 1 − 
4©�
�
  (8) 

where A is the enclosed area and P is the perimeter of the contour. 

3.3.2 Fractal dimension 
Fractal Dimension (FD) is a measure of the roughness or 
jaggedness of a border or a surface. The FD of a contour L can be 
estimated by using either box-counting method or ruler method.
Box-counting method counts the number of r , r grids containing 
the contour after placing the grids over the contour. The 
relationship between FD, denoted by D, and the number of grids
N is expressed as: 

 A =  ª�/w (9) 

where ε is a constant. 
Equation 9 can be expanded to: 

 log
1
A =  z × log � − log ª (10) 

Thus, D is the slope of above equation, which can be computed by 
curve fitting techniques, such as the least square. Ruler method is 
similar to box-counting method. Instead of placing difference 
sizes of grids over the contour, ruler method measure the contour 
by different lengths of rulers. The FD is obtained from the linear 
slope of the plot of the log of measured length vs. the log of the 
ruler size (measuring unit). Only ruler method is investigated in 
this paper for its simplicity and efficiency. Our implementation
has a close value to theoretical one when we apply it to Koch’s 
snowflake (1.2593 vs. 1.26). 

3.3.3 Fourier factor 
Fourier Factor (FF) is a measure of how the energy is distributed 
in frequencies[14]. Basically a small value of FF indicates more 
energy is distributed in the high-frequency parts, which implies 
the truth for shapes with rough boundaries. The FF is derived 
from Fourier Transform of the coordinates of the contour pixels, 
as follows: 

 �� =
∑ ‖A�z(�)‖

|�|
�/

B$/�


 T	

∑ ‖A�z(�)‖�/


B$/�

 T	

 (11) 

where  

A�z(�) =  «
0;                   � = 0

(�(�))/(�(1));   � = 1, 2, … , A/2 + 1
�(� + A)/�(1) ;   � = −1, −2, … , −A/2 + 1

 (12) 

 
Figure 1 An example of energy distribution. More energy 
distributed in high frequency parts in case B (dashed line) 

than case A (solid line), matches the fact that B has a 
rougher boundary than A does. 
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�/	
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 (13) 

 
­x = +(®) + � ∙ I(®) 

 +(®), I(®)!�~ �ℎ� ®5¯ 7���� �� �ℎ� ������� (14) 

3.3.4 Fractional concavity 
Fractional concavity (fcc) is the measure of the portion of the 
cumulative concave length (CCl) to the total boundary length [10], 
which is based on polygon approximation method. Intuitively, 
regular shapes, which usually are a factor of being a benign mass, 
have fewer portions of concave segments than irregular shapes 
(usually malignant).  

4. RESULTS AND DISCUSSION 
For each breast mass in the testing data set, we computed the 
Compactness (C), Fractal Dimension (FD), Fourier Factor (FF), 
Fractional Concavity (fcc) and Fourier Irregularity Index (FII). The 
performance of these methods is validated use ROC methodology. 
As one of indicator of performance in ROC analysis, the area (Az) 
under the ROC curve is computed using trapezoidal rule. The 
highest accuracy (the ratio of the number of correctly classified 
cases to the total number of cases) was also recorded during the 
analysis. 

Table 1 Evaluation of classification results with 418 
mammograms (190 malignant and 228 benign) by various 

feature studied: Compactness (C), Fractal Demension (FD), 
Fourier Factor (FF), Fractional Concavity (fcc), Fourier 

Irregularity Index(FII) 

 TP/FN/FP/TN Sensitivity Specificity Total Az 

C 171/23/19/205 0.881 0.915 0.90 0.96 
FD 157/11/33/217 0.935 0.868 0.90 0.95 
FF 164/16/26/212 0.911 0.891 0.90 0.97 
fcc 89/15/15/139 0.663 0.903 0.75 0.65 
FII 189/15/1/213 0.926 0.995 0.96 0.99 

Table 1 provides details on classification performance of these 
methods. Our experiment shows similar results to those reported 
results. As we can see, because Compactness measures compact 
nature of the object rather than roughness, it gives a satisfactory 
sensitivity (88.1%) and a relatively high specificity (91.5%) with 
Az = 0.96. FD results in the highest sensitivity (93.5%) but also 
the lowest specificity (86.8%) among these five methods due to its 
insensitivity to large indentations or protrusions. Fraction 
Concavity shows a poor sensitivity (66.3%) as expected (Az = 
0.65) because it fails to look into the characteristics of structural 
distortions, such a spicules. FF actually shows satisfactory results 
in terms of both sensitivity (91.1%) and specificity (89.1%), but 
as we can see in the table, after we have changed the shape factor 
from coordinates to origin distance descriptor, which is the factor 
we used in our proposed method FII, the performance is improved 
in both sensitivity and specificity. It can be observed in Table 1 
and Figure 2: the sensitivity and specificity have been improved 
1.5% and 10.4%, respectively; and the area (Az) under the curve of 
FII is also larger than the one FF yields (0.99 vs. 0.97).  

In summary, our proposed irregularity measure, Fourier 
Irregularity Index, outperforms other approaches with accuracy of 
96% and Az index of 0.99. 

 
Figure 2 ROC plots for Compactness (C), Fractal Demension 
(FD), Fourier Factor (FF), Fractional Concavity (fcc), Fourier 

Irregularity Index(FII). 

However, because of the nature of origin distance descriptor, the 
constructed sequence cannot always be converted back to the 
original shape, especially when the descriptor was constructed 
from a self-intersecting shape. Because our algorithm has a weak 
capability to capture such complicate factors, the accuracy of it 
may fluctuate more than expected. Luckily, it is rare and as 
mentioned, we can bypass it because the medical properties 
derived from the shape characteristic are important, not the actual 
shapes. Furthermore, a contour-based analysis method highly 
depends on its object extraction algorithm. Thus, an ineffective 
object extraction algorithm could lead the outcome of FII to 
uninterruptable results, which is also a challenge in medical image 
analysis/understanding.  

5. CONCLUSION 
As discussed in this paper, our experimental results show that the 
proposed approach FII achieves malignant/benign classification 
accuracy of 96% with Az index of 0.99. It could be effectively 
applied to measure irregularity of breast tumor borders. Thus, a 
helpful reference to diagnose malignancy of tumors could be 
provided to radiologists by the proposed FII. It is also possible that 
a CAD system can benefit in performance improvement from our 
approach by adopting FII as one of classification factors.  
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