
22 Elementary Graph Algorithms

This chapter presents methods for representing a graph and for searching a graph.

Searching a graph means systematically following the edges of the graph so as to

visit the vertices of the graph. A graph-searching algorithm can discover much

about the structure of a graph. Many algorithms begin by searching their input

graph to obtain this structural information. Several other graph algorithms elabo-

rate on basic graph searching. Techniques for searching a graph lie at the heart of

the field of graph algorithms.

Section 22.1 discusses the two most common computational representations of

graphs: as adjacency lists and as adjacency matrices. Section 22.2 presents a sim-

ple graph-searching algorithm called breadth-first search and shows how to cre-

ate a breadth-first tree. Section 22.3 presents depth-first search and proves some

standard results about the order in which depth-first search visits vertices. Sec-

tion 22.4 provides our first real application of depth-first search: topologically sort-

ing a directed acyclic graph. A second application of depth-first search, finding the

strongly connected components of a directed graph, is the topic of Section 22.5.

22.1 Representations of graphs

We can choose between two standard ways to represent a graph G D .V;E/:

as a collection of adjacency lists or as an adjacency matrix. Either way applies

to both directed and undirected graphs. Because the adjacency-list representation

provides a compact way to represent sparse graphs—those for which jEj is much

less than jV j
2
—it is usually the method of choice. Most of the graph algorithms

presented in this book assume that an input graph is represented in adjacency-

list form. We may prefer an adjacency-matrix representation, however, when the

graph is dense—jEj is close to jV j
2
—or when we need to be able to tell quickly

if there is an edge connecting two given vertices. For example, two of the all-pairs



590 Chapter 22 Elementary Graph Algorithms

1 2

3

45

1

2

3

4

5

2 5

1

2

2

4 1 2

5 3

4

45 3

1 0 0 1

0 1 1 1

1 0 1 0

1 1 0 1

1 0 1 0

0

1

0

0

1

1 2 3 4 5

1

2

3

4

5

(a) (b) (c)

Figure 22.1 Two representations of an undirected graph. (a)An undirected graphG with 5 vertices

and 7 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation

of G.

1 2

54

1

2

3

4

5

2 4

5

6

2

4

6

5

1 0 1 0

0 0 0 1

0 0 0 1

1 0 0 0

0 0 1 0

0

0

0

0

0

1 2 3 4 5

1

2

3

4

5

(a) (b) (c)

3

6 6

6

6 0 0 0 0 0 1

0

0

1

0

0

Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8

edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

shortest-paths algorithms presented in Chapter 25 assume that their input graphs

are represented by adjacency matrices.

The adjacency-list representation of a graph G D .V;E/ consists of an ar-

ray Adj of jV j lists, one for each vertex in V . For each u 2 V , the adjacency list

AdjŒu� contains all the vertices � such that there is an edge .u; �/ 2 E. That is,

AdjŒu� consists of all the vertices adjacent to u in G. (Alternatively, it may contain

pointers to these vertices.) Since the adjacency lists represent the edges of a graph,

in pseudocode we treat the array Adj as an attribute of the graph, just as we treat

the edge set E. In pseudocode, therefore, we will see notation such as G:AdjŒu�.

Figure 22.1(b) is an adjacency-list representation of the undirected graph in Fig-

ure 22.1(a). Similarly, Figure 22.2(b) is an adjacency-list representation of the

directed graph in Figure 22.2(a).

If G is a directed graph, the sum of the lengths of all the adjacency lists is jEj,

since an edge of the form .u; �/ is represented by having � appear in AdjŒu�. IfG is



22.1 Representations of graphs 591

an undirected graph, the sum of the lengths of all the adjacency lists is 2 jEj, since

if .u; �/ is an undirected edge, then u appears in �’s adjacency list and vice versa.

For both directed and undirected graphs, the adjacency-list representation has the

desirable property that the amount of memory it requires is ‚.V CE/.

We can readily adapt adjacency lists to represent weighted graphs, that is, graphs

for which each edge has an associated weight, typically given by a weight function

w W E ! R. For example, let G D .V;E/ be a weighted graph with weight

function w. We simply store the weight w.u; �/ of the edge .u; �/ 2 E with

vertex � in u’s adjacency list. The adjacency-list representation is quite robust in

that we can modify it to support many other graph variants.

A potential disadvantage of the adjacency-list representation is that it provides

no quicker way to determine whether a given edge .u; �/ is present in the graph

than to search for � in the adjacency list AdjŒu�. An adjacency-matrix representa-

tion of the graph remedies this disadvantage, but at the cost of using asymptotically

more memory. (See Exercise 22.1-8 for suggestions of variations on adjacency lists

that permit faster edge lookup.)

For the adjacency-matrix representation of a graph G D .V;E/, we assume

that the vertices are numbered 1; 2; : : : ; jV j in some arbitrary manner. Then the

adjacency-matrix representation of a graph G consists of a jV j � jV j matrix

A D .aij / such that

aij D

(

1 if .i; j / 2 E ;

0 otherwise :

Figures 22.1(c) and 22.2(c) are the adjacency matrices of the undirected and di-

rected graphs in Figures 22.1(a) and 22.2(a), respectively. The adjacency matrix of

a graph requires ‚.V 2/memory, independent of the number of edges in the graph.

Observe the symmetry along the main diagonal of the adjacency matrix in Fig-

ure 22.1(c). Since in an undirected graph, .u; �/ and .�; u/ represent the same

edge, the adjacency matrix A of an undirected graph is its own transpose: A D AT.

In some applications, it pays to store only the entries on and above the diagonal of

the adjacency matrix, thereby cutting the memory needed to store the graph almost

in half.

Like the adjacency-list representation of a graph, an adjacency matrix can repre-

sent a weighted graph. For example, ifG D .V;E/ is a weighted graph with edge-

weight function w, we can simply store the weight w.u; �/ of the edge .u; �/ 2 E

as the entry in row u and column � of the adjacency matrix. If an edge does not

exist, we can store a NIL value as its corresponding matrix entry, though for many

problems it is convenient to use a value such as 0 or 1.

Although the adjacency-list representation is asymptotically at least as space-

efficient as the adjacency-matrix representation, adjacency matrices are simpler,

and so we may prefer them when graphs are reasonably small. Moreover, adja-



592 Chapter 22 Elementary Graph Algorithms

cency matrices carry a further advantage for unweighted graphs: they require only

one bit per entry.

Representing attributes

Most algorithms that operate on graphs need to maintain attributes for vertices

and/or edges. We indicate these attributes using our usual notation, such as �:d

for an attribute d of a vertex �. When we indicate edges as pairs of vertices, we

use the same style of notation. For example, if edges have an attribute f , then we

denote this attribute for edge .u; �/ by .u; �/: f . For the purpose of presenting and

understanding algorithms, our attribute notation suffices.

Implementing vertex and edge attributes in real programs can be another story

entirely. There is no one best way to store and access vertex and edge attributes.

For a given situation, your decision will likely depend on the programming lan-

guage you are using, the algorithm you are implementing, and how the rest of your

program uses the graph. If you represent a graph using adjacency lists, one design

represents vertex attributes in additional arrays, such as an array dŒ1 : : jV j� that

parallels the Adj array. If the vertices adjacent to u are in AdjŒu�, then what we call

the attribute u:d would actually be stored in the array entry dŒu�. Many other ways

of implementing attributes are possible. For example, in an object-oriented pro-

gramming language, vertex attributes might be represented as instance variables

within a subclass of a Vertex class.

Exercises

22.1-1

Given an adjacency-list representation of a directed graph, how long does it take

to compute the out-degree of every vertex? How long does it take to compute the

in-degrees?

22.1-2

Give an adjacency-list representation for a complete binary tree on 7 vertices. Give

an equivalent adjacency-matrix representation. Assume that vertices are numbered

from 1 to 7 as in a binary heap.

22.1-3

The transpose of a directed graph G D .V;E/ is the graph GT D .V;ET/, where

ET D f.�; u/ 2 V � V W .u; �/ 2 Eg. Thus, GT is G with all its edges reversed.

Describe efficient algorithms for computing GT from G, for both the adjacency-

list and adjacency-matrix representations of G. Analyze the running times of your

algorithms.



22.1 Representations of graphs 593

22.1-4

Given an adjacency-list representation of a multigraph G D .V;E/, describe an

O.V C E/-time algorithm to compute the adjacency-list representation of the

“equivalent” undirected graph G0 D .V;E 0/, where E 0 consists of the edges in E

with all multiple edges between two vertices replaced by a single edge and with all

self-loops removed.

22.1-5

The square of a directed graph G D .V;E/ is the graph G2 D .V;E2/ such that

.u; �/ 2 E2 if and only G contains a path with at most two edges between u and �.

Describe efficient algorithms for computing G2 from G for both the adjacency-

list and adjacency-matrix representations of G. Analyze the running times of your

algorithms.

22.1-6

Most graph algorithms that take an adjacency-matrix representation as input re-

quire time�.V 2/, but there are some exceptions. Show how to determine whether

a directed graph G contains a universal sink—a vertex with in-degree jV j ) 1 and

out-degree 0—in time O.V /, given an adjacency matrix for G.

22.1-7

The incidence matrix of a directed graph G D .V;E/ with no self-loops is a

jV j � jEj matrix B D .bij / such that

bij D

�
)1 if edge j leaves vertex i ;

1 if edge j enters vertex i ;

0 otherwise :

Describe what the entries of the matrix product BBT represent, where BT is the

transpose of B .

22.1-8

Suppose that instead of a linked list, each array entry AdjŒu� is a hash table contain-

ing the vertices � for which .u; �/ 2 E. If all edge lookups are equally likely, what

is the expected time to determine whether an edge is in the graph? What disadvan-

tages does this scheme have? Suggest an alternate data structure for each edge list

that solves these problems. Does your alternative have disadvantages compared to

the hash table?


