
12 Binary Search Trees

The search tree data structure supports many dynamic-set operations, including

SEARCH, MINIMUM, MAXIMUM, PREDECESSOR, SUCCESSOR, INSERT, and

DELETE. Thus, we can use a search tree both as a dictionary and as a priority

queue.

Basic operations on a binary search tree take time proportional to the height of

the tree. For a complete binary tree with n nodes, such operations run in ‚.lgn/

worst-case time. If the tree is a linear chain of n nodes, however, the same oper-

ations take ‚.n/ worst-case time. We shall see in Section 12.4 that the expected

height of a randomly built binary search tree is O.lg n/, so that basic dynamic-set

operations on such a tree take ‚.lg n/ time on average.

In practice, we can’t always guarantee that binary search trees are built ran-

domly, but we can design variations of binary search trees with good guaranteed

worst-case performance on basic operations. Chapter 13 presents one such vari-

ation, red-black trees, which have height O.lg n/. Chapter 18 introduces B-trees,

which are particularly good for maintaining databases on secondary (disk) storage.

After presenting the basic properties of binary search trees, the following sec-

tions show how to walk a binary search tree to print its values in sorted order, how

to search for a value in a binary search tree, how to find the minimum or maximum

element, how to find the predecessor or successor of an element, and how to insert

into or delete from a binary search tree. The basic mathematical properties of trees

appear in Appendix B.

12.1 What is a binary search tree?

A binary search tree is organized, as the name suggests, in a binary tree, as shown

in Figure 12.1. We can represent such a tree by a linked data structure in which

each node is an object. In addition to a key and satellite data, each node contains

attributes left, right, and p that point to the nodes corresponding to its left child,



12.1 What is a binary search tree? 287

5

2 5

5

8

7

6

(a)

6 8

7

5

2

(b)

Figure 12.1 Binary search trees. For any node x, the keys in the left subtree of x are at most x:key,

and the keys in the right subtree of x are at least x:key. Different binary search trees can represent

the same set of values. The worst-case running time for most search-tree operations is proportional

to the height of the tree. (a) A binary search tree on 6 nodes with height 2. (b) A less efficient binary

search tree with height 4 that contains the same keys.

its right child, and its parent, respectively. If a child or the parent is missing, the

appropriate attribute contains the value NIL. The root node is the only node in the

tree whose parent is NIL.

The keys in a binary search tree are always stored in such a way as to satisfy the

binary-search-tree property:

Let x be a node in a binary search tree. If y is a node in the left subtree

of x, then y:key � x:key. If y is a node in the right subtree of x, then

y:key � x:key.

Thus, in Figure 12.1(a), the key of the root is 6, the keys 2, 5, and 5 in its left

subtree are no larger than 6, and the keys 7 and 8 in its right subtree are no smaller

than 6. The same property holds for every node in the tree. For example, the key 5

in the root’s left child is no smaller than the key 2 in that node’s left subtree and no

larger than the key 5 in the right subtree.

The binary-search-tree property allows us to print out all the keys in a binary

search tree in sorted order by a simple recursive algorithm, called an inorder tree

walk. This algorithm is so named because it prints the key of the root of a subtree

between printing the values in its left subtree and printing those in its right subtree.

(Similarly, a preorder tree walk prints the root before the values in either subtree,

and a postorder tree walk prints the root after the values in its subtrees.) To use

the following procedure to print all the elements in a binary search tree T , we call

INORDER-TREE-WALK.T:root/.



288 Chapter 12 Binary Search Trees

INORDER-TREE-WALK.x/

1 if x ¤ NIL

2 INORDER-TREE-WALK.x: left/

3 print x:key

4 INORDER-TREE-WALK.x:right/

As an example, the inorder tree walk prints the keys in each of the two binary

search trees from Figure 12.1 in the order 2; 5; 5; 6; 7; 8. The correctness of the

algorithm follows by induction directly from the binary-search-tree property.

It takes ‚.n/ time to walk an n-node binary search tree, since after the ini-

tial call, the procedure calls itself recursively exactly twice for each node in the

tree—once for its left child and once for its right child. The following theorem

gives a formal proof that it takes linear time to perform an inorder tree walk.

Theorem 12.1

If x is the root of an n-node subtree, then the call INORDER-TREE-WALK.x/

takes ‚.n/ time.

Proof Let T .n/ denote the time taken by INORDER-TREE-WALK when it is

called on the root of an n-node subtree. Since INORDER-TREE-WALK visits all n

nodes of the subtree, we have T .n/ D �.n/. It remains to show that T .n/ D O.n/.

Since INORDER-TREE-WALK takes a small, constant amount of time on an

empty subtree (for the test x ¤ NIL), we have T .0/ D c for some constant c > 0.

For n > 0, suppose that INORDER-TREE-WALK is called on a node x whose

left subtree has k nodes and whose right subtree has n # k # 1 nodes. The time to

perform INORDER-TREE-WALK.x/ is bounded by T .n/ � T .k/CT .n#k#1/Cd

for some constant d > 0 that reflects an upper bound on the time to execute the

body of INORDER-TREE-WALK.x/, exclusive of the time spent in recursive calls.

We use the substitution method to show that T .n/ D O.n/ by proving that

T .n/ � .cCd/nC c. For n D 0, we have .cCd/ �0C c D c D T .0/. For n > 0,

we have

T .n/ � T .k/C T .n # k # 1/C d

D ..c C d/k C c/C ..c C d/.n # k # 1/C c/C d

D .c C d/nC c # .c C d/C c C d

D .c C d/nC c ;

which completes the proof.



12.2 Querying a binary search tree 289

Exercises

12.1-1

For the set of f1; 4; 5; 10; 16; 17; 21g of keys, draw binary search trees of heights 2,

3, 4, 5, and 6.

12.1-2

What is the difference between the binary-search-tree property and the min-heap

property (see page 153)? Can the min-heap property be used to print out the keys

of an n-node tree in sorted order in O.n/ time? Show how, or explain why not.

12.1-3

Give a nonrecursive algorithm that performs an inorder tree walk. (Hint: An easy

solution uses a stack as an auxiliary data structure. A more complicated, but ele-

gant, solution uses no stack but assumes that we can test two pointers for equality.)

12.1-4

Give recursive algorithms that perform preorder and postorder tree walks in ‚.n/

time on a tree of n nodes.

12.1-5

Argue that since sorting n elements takes �.n lg n/ time in the worst case in

the comparison model, any comparison-based algorithm for constructing a binary

search tree from an arbitrary list of n elements takes �.n lg n/ time in the worst

case.

12.2 Querying a binary search tree

We often need to search for a key stored in a binary search tree. Besides the

SEARCH operation, binary search trees can support such queries as MINIMUM,

MAXIMUM, SUCCESSOR, and PREDECESSOR. In this section, we shall examine

these operations and show how to support each one in time O.h/ on any binary

search tree of height h.

Searching

We use the following procedure to search for a node with a given key in a binary

search tree. Given a pointer to the root of the tree and a key k, TREE-SEARCH

returns a pointer to a node with key k if one exists; otherwise, it returns NIL.



290 Chapter 12 Binary Search Trees

2 4

3

13

7

6

17 20

18

15

9

Figure 12.2 Queries on a binary search tree. To search for the key 13 in the tree, we follow the path

15 ! 6 ! 7 ! 13 from the root. The minimum key in the tree is 2, which is found by following

left pointers from the root. The maximum key 20 is found by following right pointers from the root.

The successor of the node with key 15 is the node with key 17, since it is the minimum key in the

right subtree of 15. The node with key 13 has no right subtree, and thus its successor is its lowest

ancestor whose left child is also an ancestor. In this case, the node with key 15 is its successor.

TREE-SEARCH.x; k/

1 if x == NIL or k == x:key

2 return x

3 if k < x:key

4 return TREE-SEARCH.x: left; k/

5 else return TREE-SEARCH.x:right; k/

The procedure begins its search at the root and traces a simple path downward in

the tree, as shown in Figure 12.2. For each node x it encounters, it compares the

key k with x:key. If the two keys are equal, the search terminates. If k is smaller

than x:key, the search continues in the left subtree of x, since the binary-search-

tree property implies that k could not be stored in the right subtree. Symmetrically,

if k is larger than x:key, the search continues in the right subtree. The nodes

encountered during the recursion form a simple path downward from the root of

the tree, and thus the running time of TREE-SEARCH isO.h/, where h is the height

of the tree.

We can rewrite this procedure in an iterative fashion by “unrolling” the recursion

into a while loop. On most computers, the iterative version is more efficient.



12.2 Querying a binary search tree 291

ITERATIVE-TREE-SEARCH.x; k/

1 while x ¤ NIL and k ¤ x:key

2 if k < x:key

3 x D x: left

4 else x D x:right

5 return x

Minimum and maximum

We can always find an element in a binary search tree whose key is a minimum by

following left child pointers from the root until we encounter a NIL, as shown in

Figure 12.2. The following procedure returns a pointer to the minimum element in

the subtree rooted at a given node x, which we assume to be non-NIL:

TREE-MINIMUM.x/

1 while x: left ¤ NIL

2 x D x: left

3 return x

The binary-search-tree property guarantees that TREE-MINIMUM is correct. If a

node x has no left subtree, then since every key in the right subtree of x is at least as

large as x:key, the minimum key in the subtree rooted at x is x:key. If node x has

a left subtree, then since no key in the right subtree is smaller than x:key and every

key in the left subtree is not larger than x:key, the minimum key in the subtree

rooted at x resides in the subtree rooted at x: left.

The pseudocode for TREE-MAXIMUM is symmetric:

TREE-MAXIMUM.x/

1 while x:right ¤ NIL

2 x D x:right

3 return x

Both of these procedures run in O.h/ time on a tree of height h since, as in TREE-

SEARCH, the sequence of nodes encountered forms a simple path downward from

the root.

Successor and predecessor

Given a node in a binary search tree, sometimes we need to find its successor in

the sorted order determined by an inorder tree walk. If all keys are distinct, the



292 Chapter 12 Binary Search Trees

successor of a node x is the node with the smallest key greater than x:key. The

structure of a binary search tree allows us to determine the successor of a node

without ever comparing keys. The following procedure returns the successor of a

node x in a binary search tree if it exists, and NIL if x has the largest key in the

tree:

TREE-SUCCESSOR.x/

1 if x:right ¤ NIL

2 return TREE-MINIMUM.x:right/

3 y D x:p

4 while y ¤ NIL and x == y:right

5 x D y

6 y D y:p

7 return y

We break the code for TREE-SUCCESSOR into two cases. If the right subtree

of node x is nonempty, then the successor of x is just the leftmost node in x’s

right subtree, which we find in line 2 by calling TREE-MINIMUM.x:right/. For

example, the successor of the node with key 15 in Figure 12.2 is the node with

key 17.

On the other hand, as Exercise 12.2-6 asks you to show, if the right subtree of

node x is empty and x has a successor y, then y is the lowest ancestor of x whose

left child is also an ancestor of x. In Figure 12.2, the successor of the node with

key 13 is the node with key 15. To find y, we simply go up the tree from x until we

encounter a node that is the left child of its parent; lines 3–7 of TREE-SUCCESSOR

handle this case.

The running time of TREE-SUCCESSOR on a tree of height h is O.h/, since we

either follow a simple path up the tree or follow a simple path down the tree. The

procedure TREE-PREDECESSOR, which is symmetric to TREE-SUCCESSOR, also

runs in time O.h/.

Even if keys are not distinct, we define the successor and predecessor of any

node x as the node returned by calls made to TREE-SUCCESSOR.x/ and TREE-

PREDECESSOR.x/, respectively.

In summary, we have proved the following theorem.

Theorem 12.2

We can implement the dynamic-set operations SEARCH, MINIMUM, MAXIMUM,

SUCCESSOR, and PREDECESSOR so that each one runs in O.h/ time on a binary

search tree of height h.



12.2 Querying a binary search tree 293

Exercises

12.2-1

Suppose that we have numbers between 1 and 1000 in a binary search tree, and we

want to search for the number 363. Which of the following sequences could not be

the sequence of nodes examined?

a. 2, 252, 401, 398, 330, 344, 397, 363.

b. 924, 220, 911, 244, 898, 258, 362, 363.

c. 925, 202, 911, 240, 912, 245, 363.

d. 2, 399, 387, 219, 266, 382, 381, 278, 363.

e. 935, 278, 347, 621, 299, 392, 358, 363.

12.2-2

Write recursive versions of TREE-MINIMUM and TREE-MAXIMUM.

12.2-3

Write the TREE-PREDECESSOR procedure.

12.2-4

Professor Bunyan thinks he has discovered a remarkable property of binary search

trees. Suppose that the search for key k in a binary search tree ends up in a leaf.

Consider three sets: A, the keys to the left of the search path; B , the keys on the

search path; and C , the keys to the right of the search path. Professor Bunyan

claims that any three keys a 2 A, b 2 B , and c 2 C must satisfy a � b � c. Give

a smallest possible counterexample to the professor’s claim.

12.2-5

Show that if a node in a binary search tree has two children, then its successor has

no left child and its predecessor has no right child.

12.2-6

Consider a binary search tree T whose keys are distinct. Show that if the right

subtree of a node x in T is empty and x has a successor y, then y is the lowest

ancestor of x whose left child is also an ancestor of x. (Recall that every node is

its own ancestor.)

12.2-7

An alternative method of performing an inorder tree walk of an n-node binary

search tree finds the minimum element in the tree by calling TREE-MINIMUM and

then making n # 1 calls to TREE-SUCCESSOR. Prove that this algorithm runs

in ‚.n/ time.



294 Chapter 12 Binary Search Trees

12.2-8

Prove that no matter what node we start at in a height-h binary search tree, k

successive calls to TREE-SUCCESSOR take O.k C h/ time.

12.2-9

Let T be a binary search tree whose keys are distinct, let x be a leaf node, and let y

be its parent. Show that y:key is either the smallest key in T larger than x:key or

the largest key in T smaller than x:key.

12.3 Insertion and deletion

The operations of insertion and deletion cause the dynamic set represented by a

binary search tree to change. The data structure must be modified to reflect this

change, but in such a way that the binary-search-tree property continues to hold.

As we shall see, modifying the tree to insert a new element is relatively straight-

forward, but handling deletion is somewhat more intricate.

Insertion

To insert a new value � into a binary search tree T , we use the procedure TREE-

INSERT. The procedure takes a node ´ for which ´:key D �, ´: left D NIL,

and ´:right D NIL. It modifies T and some of the attributes of ´ in such a way that

it inserts ´ into an appropriate position in the tree.

TREE-INSERT.T; ´/

1 y D NIL

2 x D T:root

3 while x ¤ NIL

4 y D x

5 if ´:key < x:key

6 x D x: left

7 else x D x:right

8 ´:p D y

9 if y == NIL

10 T:root D ´ // tree T was empty

11 elseif ´:key < y:key

12 y: left D ´

13 else y:right D ´



12.3 Insertion and deletion 295

2 9

5

13 17

15 19

18

12

Figure 12.3 Inserting an item with key 13 into a binary search tree. Lightly shaded nodes indicate

the simple path from the root down to the position where the item is inserted. The dashed line

indicates the link in the tree that is added to insert the item.

Figure 12.3 shows how TREE-INSERT works. Just like the procedures TREE-

SEARCH and ITERATIVE-TREE-SEARCH, TREE-INSERT begins at the root of the

tree and the pointer x traces a simple path downward looking for a NIL to replace

with the input item ´. The procedure maintains the trailing pointer y as the parent

of x. After initialization, the while loop in lines 3–7 causes these two pointers

to move down the tree, going left or right depending on the comparison of ´:key

with x:key, until x becomes NIL. This NIL occupies the position where we wish to

place the input item ´. We need the trailing pointer y, because by the time we find

the NIL where ´ belongs, the search has proceeded one step beyond the node that

needs to be changed. Lines 8–13 set the pointers that cause ´ to be inserted.

Like the other primitive operations on search trees, the procedure TREE-INSERT

runs in O.h/ time on a tree of height h.

Deletion

The overall strategy for deleting a node ´ from a binary search tree T has three

basic cases but, as we shall see, one of the cases is a bit tricky.

� If ´ has no children, then we simply remove it by modifying its parent to re-

place ´ with NIL as its child.

� If ´ has just one child, then we elevate that child to take ´’s position in the tree

by modifying ´’s parent to replace ´ by ´’s child.

� If ´ has two children, then we find ´’s successor y—which must be in ´’s right

subtree—and have y take ´’s position in the tree. The rest of ´’s original right

subtree becomes y’s new right subtree, and ´’s left subtree becomes y’s new

left subtree. This case is the tricky one because, as we shall see, it matters

whether y is ´’s right child.



296 Chapter 12 Binary Search Trees

The procedure for deleting a given node ´ from a binary search tree T takes as

arguments pointers to T and ´. It organizes its cases a bit differently from the three

cases outlined previously by considering the four cases shown in Figure 12.4.

� If ´ has no left child (part (a) of the figure), then we replace ´ by its right child,

which may or may not be NIL. When ´’s right child is NIL, this case deals with

the situation in which ´ has no children. When ´’s right child is non-NIL, this

case handles the situation in which ´ has just one child, which is its right child.

� If ´ has just one child, which is its left child (part (b) of the figure), then we

replace ´ by its left child.

� Otherwise, ´ has both a left and a right child. We find ´’s successor y, which

lies in ´’s right subtree and has no left child (see Exercise 12.2-5). We want to

splice y out of its current location and have it replace ´ in the tree.

� If y is ´’s right child (part (c)), then we replace ´ by y, leaving y’s right

child alone.

� Otherwise, y lies within ´’s right subtree but is not ´’s right child (part (d)).

In this case, we first replace y by its own right child, and then we replace ´

by y.

In order to move subtrees around within the binary search tree, we define a

subroutine TRANSPLANT, which replaces one subtree as a child of its parent with

another subtree. When TRANSPLANT replaces the subtree rooted at node u with

the subtree rooted at node �, node u’s parent becomes node �’s parent, and u’s

parent ends up having � as its appropriate child.

TRANSPLANT.T; u; �/

1 if u:p == NIL

2 T:root D �

3 elseif u == u:p: left

4 u:p: left D �

5 else u:p:right D �

6 if � ¤ NIL

7 �:p D u:p

Lines 1–2 handle the case in which u is the root of T . Otherwise, u is either a left

child or a right child of its parent. Lines 3–4 take care of updating u:p: left if u

is a left child, and line 5 updates u:p:right if u is a right child. We allow � to be

NIL, and lines 6–7 update �:p if � is non-NIL. Note that TRANSPLANT does not

attempt to update �: left and �:right; doing so, or not doing so, is the responsibility

of TRANSPLANT’s caller.



12.3 Insertion and deletion 297

qq

z(a) r

qq

z

l

(b)

q

z

l

(c)

q

y

ly

q

z

l

(d)

r

q

z

l r

y

q

l r

y

r

l

x

x

xy

x

x

NIL

NIL

NIL

NIL

NIL

Figure 12.4 Deleting a node ´ from a binary search tree. Node ´ may be the root, a left child of

node q, or a right child of q. (a) Node ´ has no left child. We replace ´ by its right child r , which

may or may not be NIL. (b)Node ´ has a left child l but no right child. We replace ´ by l . (c)Node ´

has two children; its left child is node l , its right child is its successor y, and y’s right child is node x.

We replace ´ by y, updating y’s left child to become l , but leaving x as y’s right child. (d) Node ´

has two children (left child l and right child r), and its successor y ¤ r lies within the subtree rooted

at r . We replace y by its own right child x, and we set y to be r’s parent. Then, we set y to be q’s

child and the parent of l .



298 Chapter 12 Binary Search Trees

With the TRANSPLANT procedure in hand, here is the procedure that deletes

node ´ from binary search tree T :

TREE-DELETE.T; ´/

1 if ´: left == NIL

2 TRANSPLANT.T; ´; ´:right/

3 elseif ´:right == NIL

4 TRANSPLANT.T; ´; ´: left/

5 else y D TREE-MINIMUM.´:right/

6 if y:p ¤ ´

7 TRANSPLANT.T; y; y:right/

8 y:right D ´:right

9 y:right:p D y

10 TRANSPLANT.T; ´; y/

11 y: left D ´: left

12 y: left:p D y

The TREE-DELETE procedure executes the four cases as follows. Lines 1–2

handle the case in which node ´ has no left child, and lines 3–4 handle the case in

which ´ has a left child but no right child. Lines 5–12 deal with the remaining two

cases, in which ´ has two children. Line 5 finds node y, which is the successor

of ´. Because ´ has a nonempty right subtree, its successor must be the node in

that subtree with the smallest key; hence the call to TREE-MINIMUM.´:right/. As

we noted before, y has no left child. We want to splice y out of its current location,

and it should replace ´ in the tree. If y is ´’s right child, then lines 10–12 replace ´

as a child of its parent by y and replace y’s left child by ´’s left child. If y is

not ´’s left child, lines 7–9 replace y as a child of its parent by y’s right child and

turn ´’s right child into y’s right child, and then lines 10–12 replace ´ as a child of

its parent by y and replace y’s left child by ´’s left child.

Each line of TREE-DELETE, including the calls to TRANSPLANT, takes constant

time, except for the call to TREE-MINIMUM in line 5. Thus, TREE-DELETE runs

in O.h/ time on a tree of height h.

In summary, we have proved the following theorem.

Theorem 12.3

We can implement the dynamic-set operations INSERT and DELETE so that each

one runs in O.h/ time on a binary search tree of height h.



12.4 Randomly built binary search trees 299

Exercises

12.3-1

Give a recursive version of the TREE-INSERT procedure.

12.3-2

Suppose that we construct a binary search tree by repeatedly inserting distinct val-

ues into the tree. Argue that the number of nodes examined in searching for a

value in the tree is one plus the number of nodes examined when the value was

first inserted into the tree.

12.3-3

We can sort a given set of n numbers by first building a binary search tree contain-

ing these numbers (using TREE-INSERT repeatedly to insert the numbers one by

one) and then printing the numbers by an inorder tree walk. What are the worst-

case and best-case running times for this sorting algorithm?

12.3-4

Is the operation of deletion “commutative” in the sense that deleting x and then y

from a binary search tree leaves the same tree as deleting y and then x? Argue why

it is or give a counterexample.

12.3-5

Suppose that instead of each node x keeping the attribute x:p, pointing to x’s

parent, it keeps x:succ, pointing to x’s successor. Give pseudocode for SEARCH,

INSERT, and DELETE on a binary search tree T using this representation. These

procedures should operate in timeO.h/, where h is the height of the tree T . (Hint:

You may wish to implement a subroutine that returns the parent of a node.)

12.3-6

When node ´ in TREE-DELETE has two children, we could choose node y as

its predecessor rather than its successor. What other changes to TREE-DELETE

would be necessary if we did so? Some have argued that a fair strategy, giving

equal priority to predecessor and successor, yields better empirical performance.

How might TREE-DELETE be changed to implement such a fair strategy?

? 12.4 Randomly built binary search trees

We have shown that each of the basic operations on a binary search tree runs

in O.h/ time, where h is the height of the tree. The height of a binary search


