Linked List

Dr. Na Li
CSE @ UTA
March 28, 2013

Linked List

» Linked lists are a type of data structure,
which is a way to represent data in memory.
Memory is requested from the operating
system as needed, with each additional piece
of allocated memory added to our list.

» For example, if we had the numbers 5, 6, 9,
2, our linked list might look like this:

5 6 9 2

Creating Linked List

» In order for us to navigate our list, we must keep
track of the address of each piece of allocated
memory. We do this by creating a structure that
contains a variable for storing our data as well as
a pointer variable for storing the address of the
next node in the list.

» In the simplest case, a node in the linked list will
have this form:

> struct node

o |
- int value; /* or any other type */
- struct node* next;

Arrays vs. Linked Lists

» Linked lists are an alternative to using arrays
to store multiple, related values. Why not just
use arrays?

» Arrays
° Pros

- contiguous memory allows easy navigation and the use
of row offsets

- easy on programmer

° Ccons
- can’t easily insert/delete items (time complexity?)
- can’t free after use if statically allocated arrays?

Arrays vs. Linked Lists

» Linked List

° Pros
- don’t need to know the number of elements in advance

- can insert new elements without moving other
elements

- add/delete new elements
-+ can release unneeded memory
° CONSs
- not as easy to understand and manage
- not easy to access a specific node

Creating Linked List (1)

» To build a list with num nodes, we might do the following:
» #include<stdio.h>

» struct node{

» int data;

» struct node * next;

» k

» int main()

A

3 int num, i;

3 struct node * first = NULL; /* null is used to know where the list ends */
8 struct node * temp;

8 printf("Please input a positive integer:");

8 scanf("%d", &num);

> for(i = 0; i< num; i++)

> {

3 temp = (struct node *) malloc(sizeof(struct node));
8 temp->data = i;

8 temp->next = first;

> first = temp;

> }

3 while(first = NULL)

> {

8 printf("%d\n", first->data);

8 first = first->next;

> }

return O;

node in the list.

Creating Linked List (2)

> #include<stdio.h>

> struct node{

, int data;

> struct node * next;

y }

> int main()

» {

» int num, i;

> struct node * first = NULL; /* null is used to know where the list ends */
» struct node * temp, *p, *pre;

> printf("Please input a positive integer:");

> scanf("%d", &num);

> for(i = 0; i< num; i++)

’ {

> temp = (struct node *) malloc(sizeof(struct node));
> temp->data = i;

» temp->next = NULL;

> pre = p = first;

> while(p !'= NULL)

’ {

’ pre = p;

» p=p->next;
’ }

> if(pre '= NULL)

» pre->next = temp;
> else

> first = temp;
»

’ }

> while(first '= NULL)

’ {

> printf("%d\n", first->data);

> first = first->next;

’ }

return O;

» What’s the difference between the two
implementations of creating a linked list?

» What we can do to make (2) more efficient is
to have a pointer pointing to the tail of the

list.

- temp = (struct node *) malloc(sizeof(struct node));

- temp->data = i;

- temp->next = first;

- tail->next = temp;//Note whenever you use tail->,
tail cannot be NULL

- tail = temp;

Printing the list

» void printlist(struct node * head)

) printf("The list includes ");
while(head '= NULL)

{

4

4

) printf("%d ", head->data);
) head = head->next;
4

4

4

}
printf("\n");

Searching Linked List

» In this example, we search the list for each node
containing a value of d.
» void searchNode(struct node * head, int d)

»

struct node *p;
inti = 0;

p = head;
while(p!= NULL)
{

if(p->data == d)

printf("found %d at %d\n", d, i);
I++;
p = p->next;

vV VvV VvV VvV VvV VvV VvV Vv V9

Inserting a Node in a Singly Linked
List

struct node * insertNode(struct node *head, int t, int index)

r A

3 struct node *tmp, *pre, *cur;

3 inti=0;

> tmp = (struct node *) malloc(sizeof(struct node));

3 tmp->data = t;

> if(index == 0)

> {

> tmp->next = head;

> head = tmp;

> }

3 else

> {

> cur = head;

3 while(i < index)

> {

> pre = cur;

3 cur = cur->next;

> i++;

> }/ /find the place to insert

> tmp->next = pre->next;//point to the next node

3 pre->next = tmp;//disconnect and reconnect
}

rn head;

index : O 1 2

index : O 1 2

index = 1

index : O 1 2 3

» For inserting a node in the linked list, what
matters is to find the node which should
point to the node to be inserted.

» There are variations of inserting a node into a
linked list.

- Insert it at a particular place based on the index

- Insert it before/after a node which has value equal
to the input value

Deleting a Node from a Singly
Linked List

4
4
»
4
4
»
4
4
»
4
4
4
4
4
4
4

struct node * deleteNode(struct node * head, int d) {

}

struct node * n = head, *tmp;
if (n->data == d) {
return head->next; /* moved head */
}
while (n->next = NULL) {
if (n->next->data == d) {
tmp = n->next;
nh->next = n—->next->next;
free(tmp);/*if the node is created by malloc()*/
break;
}
h = h->next;

}
return head;/* head didn’t change */

» The returned value is the head pointer of the list.

n nN->next n->next->next

index : O 1 2 3

n nN->next n->next->next

index : O 1 2 3

n nN->next n->next->next

index : O 1 2

Other Considerations

» In our examples, the purpose of our linked
list was to store a single int in each node. We
could store other types of data or even
multiple data items per node.

» One potential problem with the simple linked
list in our examples is that we can only go in
one direction. It is possible to create a doubly
linked lists that contain two pointers in each
structure, one for each direction.

Find the nth to the end

» Assumption: The minimum number of nodes
in list is n. Algorithm:

- Create two pointers, pl and p2, that point to the
beginning of the node.

> Increment p2 by n-1 positions, to make it point to
the nth node from the beginning (to make the
distance of n between p1 and p2(including p1 and
p2)).

> Check for p2->next == null if yes return value of
pl, otherwise increment p/7 and pZ.If next of pZis
null it means p/ points to the nth node from the
last as the distance between the two is 7.

- Repeat Step 3.

LinkedListNode nthToEnd(LinkedListNode *head, int n) {
if (head ==null || n < 1){
return null;
}
LinkedListNode * p1, * p2;
pl = p2 = head;
for(intj=0;j<n-1;j++){// skip n-1 steps ahead
if (p2 == null) {
return null; // not found since list size < n
}
p2 = p2->next;
}
while (p2->next != null) {
pl = pl->next;
p2 = p2->next;
}

return pl;

4
4
4
4
4
4
4
4
4
4
4
4
4
»
4
4
»
4

Tutorial for Doubly Linked List

» Can you create a doubly linked-list? Insert a
node in or delete a node from the list? Search
a hode?

» http://www.thelearningpoint.net/computer-
science/data-structures-doubly-linked-list-
with-c-program-source-code

.

http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code

Some interview questions

v Vv Vv VvV v Vv

v v v WV

Here are some questions from interviews for you to practice

1. Write code to remove duplicates from an unsorted linked list.
FOLLOW UP

How would you solve this problem if a temporary buffer is not allowed?

2. You have two numbers represented by a linked list, where each node
contains a single digit.The digits are stored in reverse order, such that

the 1’s digit is at the head of the list.Write a function that adds the two
numbers and returns the sum as a linked list.

EXAMPLE Input: 3->1->5)+((5->9->2)

Output: 8 -=> 0 -> 8

3. Given a circular linked list, implement an algorithm which returns
node at the beginning of the loop.

DEFINITION Circular linked list: A (corrupt) linked list in which a node’s
Fext pointer points to an earlier node, so as to make a loop in the linked
ISst.

EXAMPLE
input: A->B->C->D->E-> C [the same C as earlier]
output: C

Study reference

» Stack and Queue

» http://www.thelearningpoint.net/computer-
science/data-structures-stacks—-with-c-
program-source-code

» http://www.thelearningpoint.net/computer-
science/data-structures—queues—-with-c-
program-source-code

» We will learn about stack and queue this
Wednesday.

.

http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code

