
Dr. Na Li
CSE @ UTA

March 28, 2013

 Linked lists are a type of data structure,
which is a way to represent data in memory.
Memory is requested from the operating
system as needed, with each additional piece
of allocated memory added to our list.

 For example, if we had the numbers 5, 6, 9,
2, our linked list might look like this:

 In order for us to navigate our list, we must keep
track of the address of each piece of allocated
memory. We do this by creating a structure that
contains a variable for storing our data as well as
a pointer variable for storing the address of the
next node in the list.

 In the simplest case, a node in the linked list will
have this form:
◦ struct node
◦ {

 int value; /* or any other type */

 struct node* next;

◦ };

 Linked lists are an alternative to using arrays
to store multiple, related values. Why not just
use arrays?

 Arrays
◦ pros

 contiguous memory allows easy navigation and the use
of row offsets

 easy on programmer

◦ cons

 can’t easily insert/delete items (time complexity?)

 can’t free after use if statically allocated arrays?

 Linked List
◦ pros

 don’t need to know the number of elements in advance

 can insert new elements without moving other
elements

 add/delete new elements

 can release unneeded memory

◦ cons

 not as easy to understand and manage

 not easy to access a specific node

 To build a list with num nodes, we might do the following:

 #include<stdio.h>

 struct node{

 int data;

 struct node * next;

 };

 int main()

 {

 int num, i;

 struct node * first = NULL; /* null is used to know where the list ends */

 struct node * temp;

 printf("Please input a positive integer:");

 scanf("%d", &num);

 for(i = 0; i< num; i++)

 {

 temp = (struct node *) malloc(sizeof(struct node));

 temp->data = i;

 temp->next = first;

 first = temp;

 }

 while(first != NULL)

 {

 printf("%d\n", first->data);

 first = first->next;

 }

 return 0;

 }

 first points to the first node in the list.

 #include<stdio.h>

 struct node{

 int data;

 struct node * next;

 };

 int main()

 {

 int num, i;

 struct node * first = NULL; /* null is used to know where the list ends */

 struct node * temp, *p, *pre;

 printf("Please input a positive integer:");

 scanf("%d", &num);

 for(i = 0; i< num; i++)

 {

 temp = (struct node *) malloc(sizeof(struct node));

 temp->data = i;

 temp->next = NULL;

 pre = p = first;

 while(p != NULL)

 {

 pre = p;

 p=p->next;

 }

 if(pre != NULL)

 pre->next = temp;

 else

 first = temp;



 }

 while(first != NULL)

 {

 printf("%d\n", first->data);

 first = first->next;

 }

 return 0;

 }



 What’s the difference between the two
implementations of creating a linked list?

 What we can do to make (2) more efficient is
to have a pointer pointing to the tail of the
list.

 temp = (struct node *) malloc(sizeof(struct node));

 temp->data = i;

 temp->next = first;

 tail->next = temp;//Note whenever you use tail->,
tail cannot be NULL

 tail = temp;

 void printlist(struct node * head)
 {
 printf("The list includes ");
 while(head != NULL)
 {
 printf("%d ", head->data);
 head = head->next;
 }
 printf("\n");
 }

 In this example, we search the list for each node
containing a value of d.
 void searchNode(struct node * head, int d)
 {
 struct node *p;
 int i = 0;
 p = head;
 while(p!= NULL)
 {
 if(p->data == d)
 printf("found %d at %d\n", d, i);
 i++;
 p = p->next;
 }
 }

 struct node * insertNode(struct node *head, int t, int index)

 {

 struct node *tmp, *pre, *cur;

 int i = 0;

 tmp = (struct node *) malloc(sizeof(struct node));

 tmp->data = t;

 if(index == 0)

 {

 tmp->next = head;

 head = tmp;

 }

 else

 {

 cur = head;

 while(i < index)

 {

 pre = cur;

 cur = cur->next;

 i++;

 }//find the place to insert

 tmp->next = pre->next;//point to the next node

 pre->next = tmp;//disconnect and reconnect

 }

 return head;

 }

0 1 2

tmp
index = 1

index : 0 1 2

cur pre

0 1 2

tmp
index = 1

index : 0 1 2

cur pre

0 1 2 tmp

index = 1

index : 0 1 2 3

 For inserting a node in the linked list, what
matters is to find the node which should
point to the node to be inserted.

 There are variations of inserting a node into a
linked list.
◦ Insert it at a particular place based on the index

◦ Insert it before/after a node which has value equal
to the input value

 struct node * deleteNode(struct node * head, int d) {
 struct node * n = head, *tmp;
 if (n->data == d) {
 return head->next; /* moved head */
 }
 while (n->next != NULL) {
 if (n->next->data == d) {
 tmp = n->next;
 n->next = n->next->next;
 free(tmp);/*if the node is created by malloc()*/
 break;
 }
 n = n->next;
 }
 return head;/* head didn’t change */
 }
 The returned value is the head pointer of the list.

0 1 2 tmp

index : 0 1 2 3

n n->next n->next->next

0 1 2 tmp

index : 0 1 2 3

n n->next n->next->next

0 1 2

index : 0 1 2

n n->next n->next->next

 In our examples, the purpose of our linked
list was to store a single int in each node. We
could store other types of data or even
multiple data items per node.

 One potential problem with the simple linked
list in our examples is that we can only go in
one direction. It is possible to create a doubly
linked lists that contain two pointers in each
structure, one for each direction.

 Assumption: The minimum number of nodes
in list is n. Algorithm:
◦ Create two pointers, p1 and p2, that point to the

beginning of the node.
◦ Increment p2 by n-1 positions, to make it point to

the nth node from the beginning (to make the
distance of n between p1 and p2(including p1 and
p2)).

◦ Check for p2->next == null if yes return value of
p1, otherwise increment p1 and p2.If next of p2 is
null it means p1 points to the nth node from the
last as the distance between the two is n.

◦ Repeat Step 3.

 LinkedListNode nthToEnd(LinkedListNode *head, int n) {
 if (head == null || n < 1) {
 return null;
 }
 LinkedListNode * p1, * p2;
 p1 = p2 = head;
 for (int j = 0; j < n - 1; j++) { // skip n-1 steps ahead
 if (p2 == null) {
 return null; // not found since list size < n
 }
 p2 = p2->next;
 }
 while (p2->next != null) {
 p1 = p1->next;
 p2 = p2->next;
 }
 return p1;
 }

 Can you create a doubly linked-list? Insert a
node in or delete a node from the list? Search
a node?

 http://www.thelearningpoint.net/computer-
science/data-structures-doubly-linked-list-
with-c-program-source-code

http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-doubly-linked-list-with-c-program-source-code

 Here are some questions from interviews for you to practice

 1. Write code to remove duplicates from an unsorted linked list.
 FOLLOW UP
 How would you solve this problem if a temporary buffer is not allowed?
 ___
 2. You have two numbers represented by a linked list, where each node

contains a single digit.The digits are stored in reverse order, such that
the 1’s digit is at the head of the list.Write a function that adds the two
numbers and returns the sum as a linked list.

 EXAMPLE Input: (3 -> 1 -> 5) + (5 -> 9 -> 2)
 Output: 8 -> 0 -> 8
 ___
 3. Given a circular linked list, implement an algorithm which returns

node at the beginning of the loop.
 DEFINITION Circular linked list: A (corrupt) linked list in which a node’s

next pointer points to an earlier node, so as to make a loop in the linked
list.

 EXAMPLE
 input: A -> B -> C -> D -> E -> C [the same C as earlier]
 output: C
 ___

 Stack and Queue

 http://www.thelearningpoint.net/computer-
science/data-structures-stacks--with-c-
program-source-code

 http://www.thelearningpoint.net/computer-
science/data-structures-queues--with-c-
program-source-code

 We will learn about stack and queue this
Wednesday.

http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-stacks--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code
http://www.thelearningpoint.net/computer-science/data-structures-queues--with-c-program-source-code

