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Definitions

Word – A delimited string of characters as it appears in the
text.

Term – A “normalized” word (case, morphology, spelling etc);
an equivalence class of words.

Token – An instance of a word or term occurring in a
document.

Type – The same as a term in most cases: an equivalence
class of tokens.
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Recall: Inverted index construction

Input:

Friends, Romans, countrymen. So let it be with Caesar . . .

Output:

friend roman countryman so . . .

Each token is a candidate for a postings entry.

What are valid tokens to emit?
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Stop words

stop words = extremely common words which would appear
to be of little value in helping select documents matching a
user need

Examples: a, an, and, are, as, at, be, by, for, from, has, he, in,

is, it, its, of, on, that, the, to, was, were, will, with

Stop word elimination used to be standard in older IR systems.

But you need stop words for phrase queries, e.g. “King of
Denmark”

Most web search engines index stop words.
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Lemmatization

Reduce inflectional/variant forms to base form

Example: am, are, is → be

Example: car, cars, car’s, cars’ → car

Example: the boy’s cars are different colors → the boy car be

different color

Lemmatization implies doing “proper” reduction to dictionary
headword form (the lemma).

Inflectional morphology (cutting → cut) vs. derivational
morphology (destruction → destroy)
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Stemming

Definition of stemming: Crude heuristic process that chops off
the ends of words in the hope of achieving what “principled”
lemmatization attempts to do with a lot of linguistic
knowledge.

Language dependent

Often inflectional and derivational

Example for derivational: automate, automatic, automation

all reduce to automat
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Porter stemmer: A few rules

Rule Example

SSES → SS caresses → caress
IES → I ponies → poni
SS → SS caress → caress
S → cats → cat
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Scoring as the basis of ranked retrieval

We wish to return in order the documents most likely to be
useful to the searcher.

How can we rank-order the documents in the collection with
respect to a query?

Assign a score – say in [0, 1] – to each document

This score measures how well document and query “match”.
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Query-document matching scores

We need a way of assigning a score to a query/document pair.

Let’s start with a one-term query.

If the query term does not occur in the document: score
should be 0.

The more frequent the query term in the document, the
higher the score
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From now on, we will use the frequencies of terms

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 157 73 0 0 0 1
Brutus 4 157 0 2 0 0
Caesar 232 227 0 2 1 0
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 8 5 8
worser 2 0 1 1 1 5
. . .

Each document is represented by a count vector ∈ N
|V |.
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Bag of words model

We do not consider the order of words in a document.

John is quicker than Mary and Mary is quicker than John are
represented the same way.

This is called a bag of words model.
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Term frequency tf

The term frequency tft,d of term t in document d is defined
as the number of times that t occurs in d .

We want to use tf when computing query-document match
scores.

But how?

Schütze: Scoring, term weighting, the vector space model 20 / 53
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Term frequency tf

The term frequency tft,d of term t in document d is defined
as the number of times that t occurs in d .

We want to use tf when computing query-document match
scores.

But how?

Raw term frequency is not what we want.

A document with 10 occurrences of the term is more relevant
than a document with one occurrence of the term.

But not 10 times more relevant.

Relevance does not increase proportionally with term
frequency.
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Log frequency weighting

The log frequency weight of term t in d is defined as follows

wt,d =

{

1 + log10 tft,d if tft,d > 0
0 otherwise

0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.
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Log frequency weighting

The log frequency weight of term t in d is defined as follows

wt,d =

{

1 + log10 tft,d if tft,d > 0
0 otherwise

0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.

Score for a document-query pair: sum over terms t in both q

and d :
matching-score =

∑

t∈q∩d(1 + log tft,d)
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Log frequency weighting

The log frequency weight of term t in d is defined as follows

wt,d =

{

1 + log10 tft,d if tft,d > 0
0 otherwise

0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.

Score for a document-query pair: sum over terms t in both q

and d :
matching-score =

∑

t∈q∩d(1 + log tft,d)

The score is 0 if none of the query terms is present in the
document.
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Document frequency

Rare terms are more informative than frequent terms.
Consider a term in the query that is rare in the collection (e.g.,
arachnocentric)

A document containing this term is very likely to be relevant.
→ We want a high weight for rare terms like arachnocentric.
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Document frequency

Rare terms are more informative than frequent terms.
Consider a term in the query that is rare in the collection (e.g.,
arachnocentric)

A document containing this term is very likely to be relevant.
→ We want a high weight for rare terms like arachnocentric.

Consider a term in the query that is frequent in the collection (e.g., high,
increase, line)

A document containing this term is more likely to be relevant than a
document that doesn’t, but it’s not a sure indicator of relevance.
→ For frequent terms, we want positive weights for words like high,
increase, and line, but lower weights than for rare terms.
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Document frequency

Rare terms are more informative than frequent terms.
Consider a term in the query that is rare in the collection (e.g.,
arachnocentric)

A document containing this term is very likely to be relevant.
→ We want a high weight for rare terms like arachnocentric.

Consider a term in the query that is frequent in the collection (e.g., high,
increase, line)

A document containing this term is more likely to be relevant than a
document that doesn’t, but it’s not a sure indicator of relevance.
→ For frequent terms, we want positive weights for words like high,
increase, and line, but lower weights than for rare terms.

We will use document frequency to factor this into computing the
matching score.
The document frequency is the number of documents in the collection
that the term occurs in.
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idf weight

dft is the document frequency, the number of documents that t

occurs in.
df is an inverse measure of the informativeness of the term.
We define the idf weight of term t as follows:

idft = log10

N

dft

idf is a measure of the informativeness of the term.
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Examples for idf

Compute idft using the formula: idft = log10
1,000,000

dft

term dft idft
calpurnia 1 6
animal 100 4
sunday 1000 3
fly 10,000 2
under 100,000 1
the 1,000,000 0
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tf-idf weighting

The tf-idf weight of a term is the product of its tf weight and
its idf weight.

wt,d = (1 + log tft,d) · log
N

dft

Best known weighting scheme in information retrieval

Note: the “-” in tf-idf is a hyphen, not a minus sign!
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Summary: tf-idf

Assign a tf-idf weight for each term t in each document d :
wt,d = (1 + log tft,d) · log N

dft
N: total number of documents

Increases with the number of occurrences within a document

Increases with the rarity of the term in the collection
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Binary → count → weight matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 5.25 3.18 0.0 0.0 0.0 0.35
Brutus 1.21 6.10 0.0 1.0 0.0 0.0
Caesar 8.59 2.54 0.0 1.51 0.25 0.0
Calpurnia 0.0 1.54 0.0 0.0 0.0 0.0
Cleopatra 2.85 0.0 0.0 0.0 0.0 0.0
mercy 1.51 0.0 1.90 0.12 5.25 0.88
worser 1.37 0.0 0.11 4.15 0.25 1.95
. . .

Each document is now represented by a real-valued vector of tf-idf weights
∈ R

|V |.
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Documents as vectors

Each document is now represented by a real-valued vector of
tf-idf weights ∈ R

|V |.

So we have a |V |-dimensional real-valued vector space.

Terms are axes of the space.

Documents are points or vectors in this space.

Very high-dimensional: tens of millions of dimensions when
you apply this to a web search engine

This is a very sparse vector - most entries are zero.

Schütze: Scoring, term weighting, the vector space model 33 / 53



Recap Term frequency tf-idf weighting The vector space

Queries as vectors

Key idea 1: do the same for queries: represent them as
vectors in the space

Key idea 2: Rank documents according to their proximity to
the query
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How do we formalize vector space similarity?

First cut: distance between two points

( = distance between the end points of the two vectors)

Euclidean distance?

Schütze: Scoring, term weighting, the vector space model 35 / 53
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How do we formalize vector space similarity?

First cut: distance between two points

( = distance between the end points of the two vectors)

Euclidean distance?

Euclidean distance is a bad idea . . .

. . . because Euclidean distance is large for vectors of different
lengths.
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Why distance is a bad idea

0 1
0

1

jealous

gossip

q

d1

d2

d3

The Euclidean distance of ~q

and ~d2 is large although the
distribution of terms in the
query q and the distribution of
terms in the document d2 are
very similar.
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Use angle instead of distance

Rank documents according to angle with query

Thought experiment: take a document d and append it to
itself. Call this document d ′.

“Semantically” d and d ′ have the same content.

The angle between the two documents is 0, corresponding to
maximal similarity.

The Euclidean distance between the two documents can be
quite large.
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From angles to cosines

The following two notions are equivalent.

Rank documents according to the angle between query and
document in decreasing order
Rank documents according to cosine(query,document) in
increasing order

Cosine is a monotonically decreasing function of the angle for
the interval [0◦, 180◦]

Schütze: Scoring, term weighting, the vector space model 38 / 53



Recap Term frequency tf-idf weighting The vector space

Length normalization

How do we compute the cosine?

A vector can be (length-) normalized by dividing each of its
components by its length – here we use the L2 norm:

||x ||2 =
√

∑

i x
2
i

This maps vectors onto the unit sphere . . .

. . . since after normalization: ||x ||2 =
√

∑

i x
2
i = 1.0

As a result, longer documents and shorter documents have
weights of the same order of magnitude.

Effect on the two documents d and d ′ (d appended to itself)
from earlier slide: they have identical vectors after
length-normalization.
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Cosine similarity between query and document

cos(~q, ~d) = sim(~q, ~d) =
~q · ~d

|~q||~d |
=

∑|V |
i=1 qidi

√
∑|V |

i=1 q2
i

√
∑|V |

i=1 d2
i

qi is the tf-idf weight of term i in the query.

di is the tf-idf weight of term i in the document.

|~q| and |~d | are the lengths of ~q and ~d .

This is the cosine similarity of ~q and ~d . . . . . . or, equivalently,
the cosine of the angle between ~q and ~d .
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Cosine similarity illustrated

0 1
0

1

jealous

gossip

~v(q)

~v(d1)

~v(d2)

~v(d3)

θ
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Cosine: Example

How similar are
the novels? SaS:
Sense and
Sensibility, PaP:
Pride and
Prejudice, and
WH: Wuthering
Heights?

term frequencies (counts)

term SaS PaP WH

affection 115 58 20
jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38
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Cosine: Example

term frequencies (counts)

term SaS PaP WH

affection 115 58 20
jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38

log frequency weighting

term SaS PaP WH

affection 3.06 2.76 2.30
jealous 2.0 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

(To simplify this example, we don’t do idf weighting.)
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Cosine: Example

log frequency weighting

term SaS PaP WH

affection 3.06 2.76 2.30
jealous 2.0 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

log frequency weighting
& cosine normalization

term SaS PaP WH

affection 0.789 0.832 0.524
jealous 0.515 0.555 0.465
gossip 0.335 0.0 0.405
wuthering 0.0 0.0 0.588
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Cosine: Example

log frequency weighting

term SaS PaP WH

affection 3.06 2.76 2.30
jealous 2.0 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

log frequency weighting
& cosine normalization

term SaS PaP WH

affection 0.789 0.832 0.524
jealous 0.515 0.555 0.465
gossip 0.335 0.0 0.405
wuthering 0.0 0.0 0.588

cos(SaS,PaP) ≈
0.789 ∗ 0.832 + 0.515 ∗ 0.555 + 0.335 ∗ 0.0 + 0.0 ∗ 0.0 ≈ 0.94.
cos(SaS,WH) ≈ 0.79
cos(PaP,WH) ≈ 0.69
Why do we have cos(SaS,PaP) > cos(SAS,WH)?
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Summary: Ranked retrieval in the vector space model

Represent the query as a weighted tf-idf vector

Represent each document as a weighted tf-idf vector

Compute the cosine similarity between the query vector and
each document vector

Rank documents with respect to the query

Return the top K (e.g., K = 10) to the user
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Formal definition of TC: Training

Given:

A document space X

Documents are represented in this space, typically some type
of high-dimensional space.

A fixed set of classes C = {c1, c2, . . . , cJ}
The classes are human-defined for the needs of an application
(e.g., spam vs. non-spam).

A training set D of labeled documents with each labeled
document 〈d , c〉 ∈ X× C

Using a learning method or learning algorithm, we then wish to
learn a classifier γ that maps documents to classes:

γ : X→ C

Schütze: Text classification & Naive Bayes 7 / 48
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Formal definition of TC: Application/Testing

Given: a description d ∈ X of a document

Determine: γ(d) ∈ C, that is, the class that is most appropriate
for d

Schütze: Text classification & Naive Bayes 8 / 48
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Topic classification

classes:

training
set:

test
set:

regions industries subject areas

γ(d ′) =China

first

private

Chinese

airline

UK China poultry coffee elections sports

London

congestion

Big Ben

Parliament

the Queen

Windsor

Beijing

Olympics

Great Wall

tourism

communist

Mao

chicken

feed

ducks

pate

turkey

bird flu

beans

roasting

robusta

arabica

harvest

Kenya

votes

recount

run-off

seat

campaign

TV ads

baseball

diamond

soccer

forward

captain

team

d ′
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Many search engine functionalities are based

on classification.

Examples?
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Another TC task: spam filtering

From: ‘‘’’ <takworlld@hotmail.com>

Subject: real estate is the only way... gem oalvgkay

Anyone can buy real estate with no money down

Stop paying rent TODAY !

There is no need to spend hundreds or even thousands for

similar courses

I am 22 years old and I have already purchased 6 properties

using the

methods outlined in this truly INCREDIBLE ebook.

Change your life NOW !

=================================================

Click Below to order:

http://www.wholesaledaily.com/sales/nmd.htm

=================================================
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Applications of text classification in IR

Language identification (classes: English vs. French etc.)

The automatic detection of spam pages (spam vs. nonspam,
example: googel.org)

The automatic detection of sexually explicit content (sexually
explicit vs. not)

Sentiment detection: is a movie or product review positive or
negative (positive vs. negative)

Topic-specific or vertical search – restrict search to a
“vertical” like “related to health” (relevant to vertical vs. not)

Machine-learned ranking function in ad hoc retrieval (relevant
vs. nonrelevant)

Semantic Web: Automatically add semantic tags for
non-tagged text (e.g., for each paragraph: relevant to a
vertical like health or not)
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The Naive Bayes classifier

The Naive Bayes classifier is a probabilistic classifier.

We compute the probability of a document d being in a class
c as follows:

P(c |d) ∝ P(c)
∏

1≤k≤nd

P(tk |c)

Schütze: Text classification & Naive Bayes 17 / 48
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The Naive Bayes classifier

The Naive Bayes classifier is a probabilistic classifier.

We compute the probability of a document d being in a class
c as follows:

P(c |d) ∝ P(c)
∏

1≤k≤nd

P(tk |c)

P(tk |c) is the conditional probability of term tk occurring in a
document of class c

P(tk |c) as a measure of how much evidence tk contributes
that c is the correct class.

P(c) is the prior probability of c .

Schütze: Text classification & Naive Bayes 17 / 48
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Maximum a posteriori class

Our goal is to find the “best” class.

The best class in Naive Bayes classification is the most likely
or maximum a posteriori (MAP) class cmap:

cmap = arg max
c∈C

P̂(c |d) = arg max
c∈C

P̂(c)
∏

1≤k≤nd

P̂(tk |c)

We write P̂ for P since these values are estimates from the
training set.
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Derivation of Naive Bayes rule

We want to find the class that is most likely given the document:

cmap = arg max
c∈C

P(c |d)

Apply Bayes rule P(A|B) = P(B|A)P(A)
P(B) :

cmap = arg max
c∈C

P(d |c)P(c)

P(d)

Drop denominator since P(d) is the same for all classes:

cmap = arg max
c∈C

P(d |c)P(c)

Schütze: Text classification & Naive Bayes 32 / 48
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Too many parameters / sparseness

cmap = arg max
c∈C

P(d |c)P(c)

= arg max
c∈C

P(〈t1, . . . , tk , . . . , tnd
〉|c)P(c)

Why can’t we use this to make an actual classification decision?

Schütze: Text classification & Naive Bayes 33 / 48
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Too many parameters / sparseness

cmap = arg max
c∈C

P(d |c)P(c)

= arg max
c∈C

P(〈t1, . . . , tk , . . . , tnd
〉|c)P(c)

Why can’t we use this to make an actual classification decision?

There are two many parameters P(〈t1, . . . , tk , . . . , tnd
〉|c), one

for each unique combination of a class and a sequence of
words.

We would need a very, very large number of training examples
to estimate that many parameters.

This the problem of data sparseness.
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Naive Bayes conditional independence assumption

To reduce the number of parameters to a manageable size, we
make the Naive Bayes conditional independence assumption:

P(d |c) = P(〈t1, . . . , tnd
〉|c) =

∏

1≤k≤nd

P(Xk = tk |c)

We assume that the probability of observing the conjunction of
attributes is equal to the product of the individual probabilities
P(Xk = tk |c).
Recall from earlier the estimates for these priors and conditional
probabilities: P̂(c) = Nc

N
and P̂(t|c) = Tct+1

(
P

t′∈V Tct′ )+B

Schütze: Text classification & Naive Bayes 34 / 48
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Maximum a posteriori class

Our goal is to find the “best” class.

The best class in Naive Bayes classification is the most likely
or maximum a posteriori (MAP) class cmap:

cmap = arg max
c∈C

P̂(c |d) = arg max
c∈C

P̂(c)
∏

1≤k≤nd

P̂(tk |c)
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Taking the log

Multiplying lots of small probabilities can result in floating
point underflow.

Since log(xy) = log(x) + log(y), we can sum log probabilities
instead of multiplying probabilities.

Since log is a monotonic function, the class with the highest
score does not change.

So what we usually compute in practice is:

cmap = arg max
c∈C

[log P̂(c) +
∑

1≤k≤nd

log P̂(tk |c)]
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Parameter estimation

How to estimate parameters P̂(c) and P̂(tk |c) from training
data?
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P̂(c) =
Nc

N

Nc : number of docs in class c ; N: total number of docs
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Text classification Naive Bayes Evaluation of TC NB independence assumptions

Parameter estimation

How to estimate parameters P̂(c) and P̂(tk |c) from training
data?

Prior:

P̂(c) =
Nc

N

Nc : number of docs in class c ; N: total number of docs

Conditional probabilities:

P̂(t|c) =
Tct

∑

t′∈V Tct′

Tct is the number of tokens of t in training documents from
class c (includes multiple occurrences)
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To avoid zeros: Add-one smoothing

Add one to each count to avoid zeros:

P̂(t|c) =
Tct + 1

∑

t′∈V (Tct′ + 1)
=

Tct + 1

(
∑

t′∈V Tct′) + B

B is the number of different words (in this case the size of the
vocabulary: |V | = M)
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Naive Bayes: Summary

Estimate parameters from training corpus using add-one
smoothing

For a new document, for each class, compute sum of (i) log of
prior and (ii) logs of conditional probabilities of the terms

Assign document to the class with the largest score
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Text classification Naive Bayes Evaluation of TC NB independence assumptions

Example: Data

docID words in document in c = China?

training set 1 Chinese Beijing Chinese yes
2 Chinese Chinese Shanghai yes
3 Chinese Macao yes
4 Tokyo Japan Chinese no

test set 5 Chinese Chinese Chinese Tokyo Japan ?
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Example: Parameter estimates

Priors: P̂(c) = 3/4 and P̂(c) = 1/4
Conditional probabilities:

P̂(Chinese|c) = (5 + 1)/(8 + 6) = 6/14 = 3/7

P̂(Tokyo|c) = P̂(Japan|c) = (0 + 1)/(8 + 6) = 1/14

P̂(Chinese|c) = (1 + 1)/(3 + 6) = 2/9

P̂(Tokyo|c) = P̂(Japan|c) = (1 + 1)/(3 + 6) = 2/9

The denominators are (8 + 6) and (3 + 6) because the lengths of
textc and textc are 8 and 3, respectively, and because the constant
B is 6 as the vocabulary consists of six terms.
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Example: Classification

P̂(c |d5) ∝ 3/4 · (3/7)3 · 1/14 · 1/14 ≈ 0.0003

P̂(c |d5) ∝ 1/4 · (2/9)3 · 2/9 · 2/9 ≈ 0.0001

Thus, the classifier assigns the test document to c = China.
The reason for this classification decision is that the three
occurrences of the positive indicator Chinese in d5 outweigh the
occurrences of the two negative indicators Japan and Tokyo.
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Text classification Naive Bayes Evaluation of TC NB independence assumptions

Violation of Naive Bayes independence assumptions

The independence assumptions do not really hold of
documents written in natural language.

Conditional independence:

P(〈t1, . . . , tnd
〉|c) =

∏

1≤k≤nd

P(Xk = tk |c)

Examples for why this assumption is not really true?
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Why does Naive Bayes work?

Naive Bayes can work well even though conditional
independence assumptions are badly violated.

Example:
c1 c2 class selected

true probability P(c |d) 0.6 0.4 c1

P̂(c)
∏

1≤k≤nd
P̂(tk |c) 0.00099 0.00001

NB estimate P̂(c |d) 0.99 0.01 c1
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Why does Naive Bayes work?

Naive Bayes can work well even though conditional
independence assumptions are badly violated.

Example:
c1 c2 class selected

true probability P(c |d) 0.6 0.4 c1

P̂(c)
∏

1≤k≤nd
P̂(tk |c) 0.00099 0.00001

NB estimate P̂(c |d) 0.99 0.01 c1

Double counting of evidence causes underestimation (0.01)
and overestimation (0.99).

Classification is about predicting the correct class and not
about accurately estimating probabilities.

Correct estimation ⇒ accurate prediction.

But not vice versa!
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Naive Bayes is not so naive

Naive Bayes has won some bakeoffs (e.g., KDD-CUP 97)

More robust to nonrelevant features than some more complex
learning methods

More robust to concept drift (changing of definition of class
over time) than some more complex learning methods

Better than methods like decision trees when we have many
equally important features

A good dependable baseline for text classification (but not the
best)

Optimal if independence assumptions hold (never true for
text, but true for some domains)

Very fast

Low storage requirements
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What is clustering?

Clustering is the process of grouping a set of documents into
clusters of similar documents.

Documents within a cluster should be similar.

Documents from different clusters should be dissimilar.

Clustering is the most common form of unsupervised learning.

Unsupervised = there are no labeled or annotated data.
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Classification vs. Clustering

Classification: supervised learning

Clustering: unsupervised learning

Classification: Classes are human-defined and part of the
input to the learning algorithm.

Clustering: Clusters are inferred from the data without human
input.
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Classification vs. Clustering

Classification: supervised learning

Clustering: unsupervised learning

Classification: Classes are human-defined and part of the
input to the learning algorithm.

Clustering: Clusters are inferred from the data without human
input.

However, there are many ways of influencing the outcome of
clustering: number of clusters, similarity measure,
representation of documents, . . .
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The cluster hypothesis

Cluster hypothesis. Documents in the same cluster behave
similarly with respect to relevance to information needs.

All applications in IR are based (directly or indirectly) on the
cluster hypothesis.
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Applications of clustering in IR

Application What is Benefit Example
clustered?

Search result clustering search
results

more effective information
presentation to user

Scatter-Gather (subsets of)
collection

alternative user interface:
“search without typing”

Collection clustering collection effective information pre-
sentation for exploratory
browsing

McKeown et al. 2002,
http://news.google.com

Language modeling collection increased precision and/or
recall

Liu&Croft 2004

Cluster-based retrieval collection higher efficiency: faster
search

Salton 1971
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Search result clustering for better navigation
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Global navigation: Yahoo
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Note: Yahoo/MESH are not examples of clustering.

But they are well known examples for using a global hierarchy
for navigation.

Global navigation based on clustering:

Cartia
Themescapes
Google News
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Flat vs. Hierarchical clustering

Flat algorithms

Usually start with a random (partial) partitioning of docs into
groups
Refine iteratively
Main algorithm: K -means
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Recap Introduction Clustering in IR K -means Evaluation How many clusters?

Flat vs. Hierarchical clustering

Flat algorithms

Usually start with a random (partial) partitioning of docs into
groups
Refine iteratively
Main algorithm: K -means

Hierarchical algorithms

Create a hierarchy
Bottom-up, agglomerative
Top-down, divisive
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Flat algorithms

Flat algorithms compute a partition of N documents into a
set of K clusters.

Given: a set of documents and the number K

Find: a partition in K clusters that optimizes the chosen
partitioning criterion

Global optimization: exhaustively enumerate partitions, pick
optimal one

Not tractable

Effective heuristic method: K -means algorithm
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K -means

Objective/partitioning criterion: minimize the average squared
difference from the centroid
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K -means

Objective/partitioning criterion: minimize the average squared
difference from the centroid

Recall definition of centroid:

~µ(ω) =
1

|ω|

∑

~x∈ω

~x

where we use ω to denote a cluster.
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Recap Introduction Clustering in IR K -means Evaluation How many clusters?

K -means

Objective/partitioning criterion: minimize the average squared
difference from the centroid

Recall definition of centroid:

~µ(ω) =
1

|ω|

∑

~x∈ω

~x

where we use ω to denote a cluster.

We try to find the minimum average squared difference by
iterating two steps:

reassignment: assign each vector to its closest centroid
recomputation: recompute each centroid as the average of the
vectors that were assigned to it in reassignment
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What is a good clustering?

Internal criteria

Example of an internal criterion: RSS in K -means

But an internal criterion often does not evaluate the actual
utility of a clustering in the application.
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Recap Introduction Clustering in IR K -means Evaluation How many clusters?

What is a good clustering?

Internal criteria

Example of an internal criterion: RSS in K -means

But an internal criterion often does not evaluate the actual
utility of a clustering in the application.

Alternative: External criteria

Evaluate with respect to a human-defined classification
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External criteria for clustering quality

Based on a gold standard data set, e.g., the Reuters collection
we also used for the evaluation of classification

Goal: Clustering should reproduce the classes in the gold
standard

(But we only want to reproduce how documents are divided
into groups, not the class labels.)

First measure for how well we were able to reproduce the
classes: purity
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External criterion: Purity

purity(Ω, C ) =
1

N

∑

k

max
j
|ωk ∩ cj |

Ω = {ω1, ω2, . . . , ωK} is the set of clusters and
C = {c1, c2, . . . , cJ} is the set of classes.

For each cluster ωk : find class cj with most members nkj in ωk

Sum all nkj and divide by total number of points

Schütze: Flat clustering 47 / 59



Recap Introduction Clustering in IR K -means Evaluation How many clusters?

Example for computing purity

x

o

x x

x

x

o

x

o

o ⋄
o x

⋄ ⋄

⋄

x

cluster 1 cluster 2 cluster 3

Majority class and number of members of the majority class for the
three clusters are: x, 5 (cluster 1); o, 4 (cluster 2); and ⋄, 3
(cluster 3). Purity is (1/17)× (5 + 4 + 3) ≈ 0.71.
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Rand index

Definition: RI = TP+TN
TP+FP+FN+TN
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Rand index

Definition: RI = TP+TN
TP+FP+FN+TN

Based on 2x2 contingency table:
same cluster different clusters

same class true positives (TP) false negatives (FN)
different classes false positives (FP) true negatives (TN)
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Recap Introduction Clustering in IR K -means Evaluation How many clusters?

Rand index

Definition: RI = TP+TN
TP+FP+FN+TN

Based on 2x2 contingency table:
same cluster different clusters

same class true positives (TP) false negatives (FN)
different classes false positives (FP) true negatives (TN)

TP+FN+FP+TN is the total number of pairs.

There are
(
N
2

)

pairs for N documents.

Example:
(
13
2

)

= 136 in o/⋄/x example

Each pair is either positive or negative (the clustering puts the
two documents in the same or in different clusters) . . .

. . . and either “true” (correct) or “false” (incorrect): the
clustering decision is correct or incorrect.
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As an example, we compute RI for the o/⋄/x example. We first
compute TP + FP. The three clusters contain 6, 6, and 5 points,
respectively, so the total number of “positives” or pairs of
documents that are in the same cluster is:

TP + FP =

(

6
2

)

+

(

6
2

)

+

(

5
2

)

= 40

Of these, the x pairs in cluster 1, the o pairs in cluster 2, the ⋄
pairs in cluster 3, and the x pair in cluster 3 are true positives:

TP =

(

5
2

)

+

(

4
2

)

+

(

3
2

)

+

(

2
2

)

= 20

Thus, FP = 40− 20 = 20.
FN and TN are computed similarly.
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Rand measure for the o/⋄/x example

same cluster different clusters
same class TP = 20 FN = 24
different classes FP = 20 TN = 72

RI is then (20 + 72)/(20 + 20 + 24 + 72) ≈ 0.68.
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Hierarchical clustering

Our goal in hierarchical clustering is to create a hierarchy like the one we saw earlier
in Reuters:

coffee poultry oil & gasFranceUKChinaKenya

industriesregions

TOP
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Our goal in hierarchical clustering is to create a hierarchy like the one we saw earlier
in Reuters:

coffee poultry oil & gasFranceUKChinaKenya

industriesregions
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We want to create this hierarchy automatically.
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Hierarchical clustering

Our goal in hierarchical clustering is to create a hierarchy like the one we saw earlier
in Reuters:

coffee poultry oil & gasFranceUKChinaKenya

industriesregions

TOP

We want to create this hierarchy automatically.
We can do this either top-down or bottom-up.
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Hierarchical clustering

Our goal in hierarchical clustering is to create a hierarchy like the one we saw earlier
in Reuters:

coffee poultry oil & gasFranceUKChinaKenya

industriesregions

TOP

We want to create this hierarchy automatically.
We can do this either top-down or bottom-up.
The best known bottom-up method is hierarchical agglomerative clustering.
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Hierarchical agglomerative clustering (HAC)

Assumes a similarity measure for determining the similarity of
two clusters (up to now: similarity of documents).

We will look at four different cluster similarity measures.

Start with each document in a separate cluster

Then repeatedly merge the two clusters that are most similar

Until there is only one cluster

The history of merging forms a binary tree or hierarchy.

The standard way of depicting this history is a dendrogram.

Schütze: Hierarchical clustering 6 / 58



R
eca

p
In

tro
d
u
ctio

n
S
in

g
le-lin

k
/
C
o
m

p
lete-lin

k
C
en

tro
id

/
G
A
A
C

V
aria

n
ts

L
a
b
elin

g
clu

sters

A
d
en

d
rogram

1.0 0.8 0.6 0.4 0.2 0.0

Ag trade reform.
Back−to−school spending is up

Lloyd’s CEO questioned
Lloyd’s chief / U.S. grilling

Viag stays positive
Chrysler / Latin America

Ohio Blue Cross
Japanese prime minister / Mexico

CompuServe reports loss
Sprint / Internet access service

Planet Hollywood
Trocadero: tripling of revenues

German unions split
War hero Colin Powell
War hero Colin Powell

Oil prices slip
Chains may raise prices

Clinton signs law
Lawsuit against tobacco companies

suits against tobacco firms
Indiana tobacco lawsuit

Most active stocks
Mexican markets

Hog prices tumble
NYSE closing averages

British FTSE index
Fed holds interest rates steady

Fed to keep interest rates steady
Fed keeps interest rates steady
Fed keeps interest rates steady

T
h
e

h
istory

of
m

ergers
can

b
e

read
off

from
b
ottom

to
top

.
T

h
e

h
orizon

tal
lin

e
of

each
m

erger
tells

u
s

w
h
at

th
e

sim
ilarity

of
th

e
m

erger
w
as.

W
e

can
cu

t
th

e
d
en

d
rogram

at
a

p
articu

lar
p
oin

t
(e.g.,

at
0.1

or
0.4)

to
get

a
fl
at

clu
sterin

g.

S
ch

ü
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