CSE5334 DATA MINING

Lecture 3: Data Warehousing, OLAP, Data Cube

CSE 4334/5334 Data Mining, Fall 2014 Department of Computer Science and Engineering, University of Texas at Arlington Chengkai Li (Slides courtesy of Jiawei Han) Chapter 3: Data Warehousing and OLAP Technology: An Overview

What is a data warehouse?

A multi-dimensional data model

Data warehouse architecture

Data warehouse implementation

What is Data Warehouse?

 "A data warehouse is a <u>subject-oriented, integrated</u>, <u>time-variant</u>, and <u>nonvolatile</u> collection of data in support of management's decision-making process."—W. H. Inmon

Data warehousing: The process of constructing and using data warehouses

Data Warehouse—Subject-Oriented

- Organized around major subjects, such as customer, product, sales
- Focusing on the modeling and analysis of data for decision makers, not on daily operations or transaction processing
- Provide a simple and concise view around particular subject issues by excluding data that are not useful in the decision support process

Data Warehouse—Integrated

- Constructed by integrating multiple, heterogeneous data sources
 relational databases, flat files, on-line transaction records
- Data cleaning and data integration techniques are applied.
 - Ensure consistency in naming conventions, encoding structures, attribute measures, etc. among different data sources
 - E.g., Hotel price: currency, tax, breakfast covered, etc.
 - When data is moved to the warehouse, it is converted.

Data Warehouse—Time Variant

- The time horizon for the data warehouse is significantly longer than that of operational systems
 - Operational database: current value data
 - Data warehouse data: provide information from a historical perspective (e.g., past 5-10 years)
- Every key structure in the data warehouse
 - Contains an element of time, explicitly or implicitly
 - But the key of operational data may or may not contain "time element"

Data Warehouse—Nonvolatile

A physically separate store of data transformed from the operational environment

- Operational update of data does not occur in the data warehouse environment
 - Does not require transaction processing, recovery, and concurrency control mechanisms
 - Requires only two operations in data accessing:

initial loading of data and access of data

Lecture 3: Data Warehousing, OLAP

Data Warehouse vs. Operational DBMS

OLTP (on-line transaction processing)

- Major task of traditional relational DBMS
- Day-to-day operations: purchasing, inventory, banking, manufacturing, payroll, registration, accounting, etc.
- OLAP (on-line analytical processing)
 - Major task of data warehouse system
 - Data analysis and decision making
- Distinct features (OLTP vs. OLAP):
 - User and system orientation: customer vs. market
 - Data contents: current, detailed vs. historical, consolidated
 - Database design: ER + application vs. star + subject
 - View: current, local vs. evolutionary, integrated

Access patterns: update vs. read-only but complex queries Lecture 3: Data Warehousing, OLAP

OLTP vs. OLAP

	OLTP OLAP				
users	clerk, IT professional	knowledge worker			
function	day to day operations	decision support			
DB design	application-oriented	subject-oriented			
data	current, up-to-date detailed, flat relational isolated	historical, summarized, multidimensional integrated, consolidated			
usage	repetitive	ad-hoc			
access	read/write index/hash on prim. key	lots of scans			
unit of work	short, simple transaction	complex query			
# records accessed	tens	millions			
#users	thousands	hundreds			
DB size	100MB-GB	100GB-TB			
metric	transaction throughput	query throughput, response			

Lecture 3: Data Warehousing, OLAP

Why Separate Data Warehouse?

- Different functions and different data:
- Note: There are more and more systems which perform OLAP analysis directly on relational databases
- □ There is no absolute boundary.

Chapter 3: Data Warehousing and OLAP Technology: An Overview

What is a data warehouse?

A multi-dimensional data model

Data warehouse architecture

Data warehouse implementation

Data Cube

 A data warehouse is based on a multidimensional data model which views data in the form of a data cube

A data cube contains aggregates of measure values, on various combinations of dimensions, and furthermore, with various levels of aggregation on individual dimension.

In data warehousing literature, an n-D base cube is called a base cuboid. The top most 0-D cuboid, which holds the highest-level of summarization, is called the apex cuboid. The lattice of cuboids forms a data cube.

A 3-D Cuboid

Sales volume as a function of product, month, and

Lecture 3: Data Warehousing, OLAP

An Example of Data Cube

Data Cube: A Lattice of Cuboids

Another 4-D Data Cube

A Concept Hierarchy on Location Dimension

Lecture 3: Data Warehousing, OLAP

Concept Hierarchy in Data Cube

Conceptual Schema Design

Dimensions & Measures

- Dimension tables, such as product (item_name, brand, type), or time(day, week, month, quarter, year)
- Fact table contains measures (such as dollars_sold) and keys to each of the related dimension tables

Conceptual Modeling of Data Warehouses

Star schema: A fact table in the middle connected to a set of

dimension tables

Example of Star Schema

Warehousing, OLAP

Conceptual Modeling of Data Warehouses

Snowflake schema: A refinement of star schema where some dimensional hierarchy is normalized into a set of smaller dimension tables, forming a shape similar to snowflake

- It provides explicit support of hierarchy
 - Easier to manage the dimension
 - Can be less efficient (due to join) than star schema

Example of Snowflake Schema

Conceptual Modeling of Data Warehouses

Fact constellations: Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called galaxy schema or fact constellation

Example of Fact Constellation

Measures of Data Cube: Three Categories

- Distributive: if the result derived by applying the function to n aggregate values is the same as that derived by applying the function on all the data without partitioning
 - E.g., count(), sum(), min(), max()
- <u>Algebraic</u>: if it can be computed by an algebraic function with M arguments (where M is a bounded integer), each of which is obtained by applying a distributive aggregate function
 - E.g., avg(), min_N(), standard_deviation()
- <u>Holistic</u>: if there is no constant bound on the storage size needed to describe a subaggregate.
 - E.g., median(), mode(), rank()

Typical OLAP Operations

Roll up (drill-up): summarize data

by climbing up hierarchy or by dimension reduction

Drill down (roll down): reverse of roll-up

- from higher level summary to lower level summary or detailed data, or introducing new dimensions
- Slice and dice: project and select

□ Pivot (rotate):

reorient the cube, visualization, 3D to series of 2D planes

Roll up and Drill Down

- □ Roll up: increasing the level of aggregation
 - further aggregating along one more dimension
 - or further aggregating along the hierarchy of one dimension
- Drill down: decreasing the level of aggregating
- It is like traversing in the lattice of cuboids.

Chapter 3: Data Warehousing and OLAP Technology: An Overview

What is a data warehouse?

A multi-dimensional data model

Data warehouse architecture

Data warehouse implementation

OLAP Server Architectures

Relational OLAP (ROLAP)

- Use relational or extended-relational DBMS to store and manage warehouse data and OLAP middle ware
- Include optimization of DBMS backend, implementation of aggregation navigation logic, and additional tools and services
- Greater scalability
- Multidimensional OLAP (MOLAP)
 - Sparse array-based multidimensional storage engine
 - Fast indexing to pre-computed summarized data
- Hybrid OLAP (HOLAP) (e.g., Microsoft SQLServer)
 - Flexibility, e.g., low level: relational, high-level: array
- Specialized SQL servers (e.g., Redbricks)

Specialized support for SQL queries over star/snowflake schemas Lecture 3: Data Warehousing, OLAP Chapter 3: Data Warehousing and OLAP Technology: An Overview

What is a data warehouse?

A multi-dimensional data model

Data warehouse architecture

Data warehouse implementation

Efficient Data Cube Computation

Data cube can be viewed as a lattice of cuboids

- The bottom-most cuboid is the base cuboid
- The top-most cuboid (apex) contains only one cell
- How many cuboids in an n-dimensional cube with L levels?

$$T = \prod_{i=1}^{n} (L_i + 1)$$

- Materialization of data cube
 - Materialize <u>every</u> (cuboid) (full materialization), <u>none</u> (no materialization), or <u>some (partial materialization)</u>
 - Selection of which cuboids to materialize

Based on size, sharing, access frequency, etc.

Lecture 3: Data Warehousing, OLAP

Indexing OLAP Data: Bitmap Index

- Index on a particular column
- Each value in the column has a bit vector: bit-op is fast
- □ The length of the bit vector: # of records in the base table
- The *i*-th bit is set if the *i*-th row of the base table has the value for the indexed column
- not suitable for high cardinality domains

Base table		Index on Region			Index on Type				
Cust	Region	Туре	RecID	Asia	Europe	America	RecID	Retail	Dealer
C1	Asia	Retail	1	1	0	0	1	1	0
C2	Europe	Dealer	2	0	1	0	2	0	1
C3	Asia	Dealer	3	1	0	0	3	0	1
C4	America	Retail	4	0	0	1	4	1	0
C5	Europe	Dealer	5	0	1	0	5	0	1

Indexing OLAP Data: Join Indices

- □ Join index: JI(R-id, S-id) where R (R-id, ...) $\triangleright \triangleleft$ S (S-id, ...)
- Traditional indices map the values to a list of record ids
 - It materializes relational join in JI file and speeds up relational join
- In data warehouses, join index relates the values of the <u>dimensions</u> of a start schema to <u>rows</u> in the fact table.
 - **E.g.** fact table: Sales and two dimensions city and product
 - A join index on city maintains for each distinct city a list of R-IDs of the tuples recording the Sales in the city
 - Join indices can span multiple dimensions

Efficient Processing OLAP Queries

- Determine which operations should be performed on the available cuboids
 - Transform drill, roll, etc. into corresponding SQL and/or OLAP operations, e.g., dice = selection + projection
- Determine which materialized cuboid(s) should be selected for OLAP op.
 - Let the query to be processed be on {brand, province_or_state} with the condition "year = 2004", and there are 4 materialized cuboids available:
 - 1) {year, item_name, city}
 - 2) {year, brand, country}
 - 3) {year, brand, province_or_state}
 - 4) {item_name, province_or_state} where year = 2004
 - Which should be selected to process the query?
- Explore indexing structures and compressed vs. dense array structures in MOLAP

Chapter 3: Data Warehousing and OLAP Technology: An Overview

What is a data warehouse?

A multi-dimensional data model

Data warehouse architecture

Data warehouse implementation

□ Summary

Summary: Data Warehouse and OLAP Technology

- Why data warehousing?
- A multi-dimensional model of a data warehouse
 - Star schema, snowflake schema, fact constellations
 - A data cube consists of dimensions & measures
- OLAP operations: drilling, rolling, slicing, dicing and pivoting
- Data warehouse architecture

OLAP servers: ROLAP, MOLAP, HOLAP

- Efficient computation of data cubes
 - Partial vs. full vs. no materialization
 - Indexing OALP data: Bitmap index and join index
 - OLAP query processing

Lecture 3: Data Warehousing, OLAP