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Abstract Shape descriptors have been identified as important features in distinguishing
malignant masses from benign masses. Thus, an effective morphological irregularity measure
could provide a helpful reference to indicate the likelihood of malignancy of breast masses. In
this paper, a new Fourier-Transform-based measure of irregularity—Fourier Irregularity Index
(F2), is proposed to provide reliable malignant/benign tumor/mass classification. The proposed
measure has been evaluated on 418 breast masses, including 190 malignant masses and 218
benign lesions identified by radiologists on film mammograms. The results show the proposed
measure has better performance than other approaches, such as Compactness Index (CI),
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Fractal Dimension (FD) and the Fourier-descriptor-based shape Factor (FF). Furthermore,
these mentioned measures are paired to investigate the possibility of performance improve-
ment. The results showed the combination of F2 and CI further enhances the performance in
indicating the likelihood of malignancy of breast masses.

Keywords Breast masses classification . Contour analysis . Fourier Transform . Irregularity
index

1 Introduction

Mammography is currently the most widely used breast screening technique and the modality
shown to achieve the mortality reduction by early detection of breast cancer [2]. However,
because of the various presentations of both malignant and benign lesions in the breast,
mammographic interpretation is a complicated task requiring considerable domain expertise.
It has been shown in previous studies that the rate of cases overlooked by radiologists is still
not low enough [25].

The Breast Imaging Reporting and Data System (BIRADS), developed by breast imaging
experts in the American College of Radiology, provides standardized terminology for inter-
pretation of lesions identified by mammography [2]. The BIRADS lexicon classifies mam-
mographic lesions into three types: masses, calcifications, and architectural distortion. “Amass
is a space occupying lesion seen in two different projections [2].” For masses, the descriptors
of shape, margins, and density can be used to further classify the lesion. Shape descriptors
have been identified as important features in distinguishing malignant masses from benign
masses. In general, a malignant tumor tends to have an irregular or lobular shape, while a
typical benign mass tends to have a round or oval shape. The descriptors of “irregular shapes”
and “spiculated margins” have previously been shown as two mass features with the highest
likelihood of malignancy, with positive predictive values of 73 % and 81 %, respectively [12].
Irregular mass shape correlates pathologically to non-uniform growth and spiculated margins
correlate with invasion of surrounding tissue, both common features of malignancy. Thus
correlating shape descriptors to malignancy of masses could be an effective approach in early
breast cancer detection.

In this paper, a measure to quantify the irregularity is proposed. The measure is based on the
irregularity exhibited in contours of breast masses. We believe that the proposed measure can
be used as a classifier to classify benign and malignant breast masses, as detailed in following
sections. As the irregularity of shapes indicates malignancy of breast masses both in mammo-
gram and in MT images, the results of this preliminary will be helpful to the future study of
MT image analysis. Our goal is to build a breast cancer detection system, which is capable to
aid medical personnel in interpreting Microwave Tomography (MT) [9] images by utilizing
traditional breast imaging techniques and knowledge, such as mammography and Magnetic
Resonance Imaging (MRI).

The paper is organized as follows. Section II reviews popular techniques that are widely
used in this area. Section III presents the methodologies we use in this study, including the
general concept of Fourier Irregularity Index (F2) developed in this work, introduction of other
three classic classifiers, and the method of pairwise combination of classifiers. The evaluation
method with the description of the data sets and the evaluation protocol are also described in
this section. Section IV compares the results obtained by both proposed measure and reported
classifiers. This section also explores the possibility of performance improvement by pairing
these classifiers. At the end, section V concludes this work.
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2 Related works

Several studies have examined the use of computer algorithms to classify breast masses based
on the irregularity exhibited in the contours. A measure of compactness has been used to
characterize the diffused or compact nature of abnormalities, rather than roughness [3, 16, 21,
22]. A circumscribed/spiculated classification rate of 92.3 % was achieved by measuring the
compactness of shapes [16]. A similar gross contour feature descriptor—tumor circularity, was
also reported useful for classifying breast masses [8]. However, the utility of compactness is
limited due to its sensitivity to noise along the contour. In this paper, we are going to
investigate the performance of compactness instead of tumor circularity because the former
is normalized.

The polygonal approximation based fractional concavity (fcc) was used to investigate the
morphological characteristics of malignant tumors, which usually have concave and convex
segments as well as microlobulations and prominent spicules. Despite the high sensitivity
(88.5 %) obtained in a previous investigation, fcc resulted in a poor specificity of 60.7 %
because it failed to look into the characteristics of the spicules in terms of their depth and
narrowness [17].

Fractal Dimension (FD) is a popular shape descriptor of characterizing complex geometric
form of regions-of-interests (ROIs) in mammograms [4, 6, 13, 15, 18]. However, one of the
disadvantages of FD is that it is insensitive to large structure indentations and protrusions [10].
Rangayyan et al. showed that FD and fcc can compensate for each other’s weakness. The
combined descriptor resulted in higher accuracy compared to other descriptors (Az=0.93) [18].
Symmetry is also considered as one of those complex geometric features of ROIs. One popular
symmetry measures is Symmetry Distance (SD) [26]. In order to get a symmetrical shape, the
minimum distance required to move the points of the original shape is called the Symmetry
Distance. However, a recent study [23] showed that it could not distinguish benign tumor from
malignant ones effectively.

Even though Fourier Transform has been widely used in image processing, very few were
applied to contour analysis. One of them is called Fourier-Descriptor-based shape factor (FF).
The FF gives values proportional to energy distribution. For example, a small FF value would
be obtained if many energies are distributed in the high-frequency part, indicating that the
shape has a rough boundary. Previously reported results showed FF achieved a specificity of
84 % and a sensitivity of 84 % [20]. In our previous work [27], Fourier Transform was also
utilized for classifying breast masses based upon their contours. Our preliminary irregularity
index, FII, was used as a quantitative measure of energy distribution of the contour of breast
masses. The energy distribution of benign tumors differs from malignant tumors, which makes
it possible to distinguish them by using this Fourier-based irregularity index. However, some
problems remain unsolved in the previous research, such as the definition of the most regular
shape (irregularity index of 0). In this paper, we extend our previous research and propose an
improved version of irregularity index—F2. The concept of F2 and the computational methods
are described in the following sections.

3 Methodologies

3.1 The proposed Fourier Irregularity Index (F2)

The breast mass contours are represented by origin distance. The origin distance of a contour
point is the squared Euclidean distance between the point and the origin (1). In this work, the
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origin (x0, y0) of a contour is the left-bottom corner of the minimum bounding box of the
contour, which has the minimum coordinates on x-y axes.

r tð Þ ¼ xt−x0ð Þ2 þ yt−y0ð Þ2 ð1Þ
where

x0; y0ð Þ ¼ min
t

xt;min
t

yt
� �

t ¼ 0; 1; 2…N−1

It is obvious that r(t) is periodic with each traversal (clockwise or counter-clockwise) of the
complete contour. By examining the plot of r(t) carefully, more frequent and/or rapid changes
can be observed if the shape has more roughness along the contour. In terms of frequency
domain representation, the r(t) sequence has a certain amount of high frequency components.
In other words, some energy of the r(t) sequence are distributed in high frequency components.
To investigate this phenomenon, Fourier Transform was applied to analyze the energy
distribution in details.

By using Fourier Transform, a Fourier series can be obtained by decomposing r(t) into the
sum of a set of sin and cosine functions [24]:

r tð Þ ¼
XN=2

n¼−N=2þ1

cn cos ntð Þ þ sin ntð Þ½ � ð2Þ

where

cn ¼
XN=2

n¼−N=2þ1

r tð Þ cos ntð Þ þ sin ntð Þ½ �

Fourier Irregularity Index (F2) is defined as:

F2 ¼ 1−

XN=2

k¼1
ℜ k=k

� �

XN=2

k¼1
ℜ k

ð3Þ

Where

ℜk ¼ ck=c1
���

���; k ¼ 1; 2…N=2:

ℜk is relative energy contribution to the shape descriptor, which is the modulus of the
normalized Fourier coefficient at frequency k. The normalization is performed to alleviate the
impact from the size of the shape by dividing the coefficient c1, which is one of significant
Fourier coefficient reflecting the size of the shape (the radius of circle, as discussed below).
That is also the reason why ℜk is called “relative” energy contribution. Although the size of a
breast mass may matter in diagnosis, the consideration of it is beyond the scope of this paper.
As you may notice, F2 only takes half of Fourier series. The reason of this is that Fourier series
are symmetric on modulus at frequency 0. Thus we use the positive frequency components to
represent the energy distributions of shapes.
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By the definition of F2, a circle has an index value of 0: its r(t) sequence could be expressed

as a cosine function r tð Þ ¼ R2 3−2
ffiffiffi
2

p
cos t=2πRð Þ� �

, where R is the radius of the circle; that
means only magnitude of c0 and c1 could be larger than or equal to zero, and thus F

2 would be
zero in this case. As a result, circles and other shapes with this property are considered as the
most regular shapes, or the least irregular shapes. The r(t) sequence of other irregular shapes
will have more energy distributed in high frequency components (large n in (2)) because of
variations along their contours, thus those shapes will have higher F2 value. Furthermore, the
impacts of noises along the contour are alleviated by the division of k, because the division the
frequencies of components decreases the weight of the energy of high frequency components.
As benign tumors tend to have round or oval shapes, while malignant tumors most likely have
irregular shapes, it is reasonable to distinguish them by calculating F2 values. Take two cases
from the database [7] as examples: LEFT_CC view of case “A_1396_1” and RIGHT_MLO
view of case “B_3016_1”. The first case (case A) was diagnosed as a benign breast mass with
a nearly round shape, and the second case (case B) was diagnosed as malignant breast mass
with an irregular shape (architectural distortion). As shown in Fig. 1, unlike case A (solid line),
r(t) sequence of case B (dashed line) has more energy distributed in high frequency compo-
nents. It indicates that the contour of case B is more irregular, or rougher than the contour of
case A, so do F2 values (0.36 vs. 0.13).

Connection with FF [20] As described in the related works and following subsection (III.B),
the proposed F2 shares some commons with FF. For example, both methods use the energy
distribution to capture the shape irregularity. One key difference between these two methods is
the analysis object. FF analyzes the spatial information, i.e. coordinates, while F2 analyzes the
variations of distance from the contour points to the origin (x0, y0). One advantage of using
distances instead of coordinates is that the variations of irregular segments in the contour can
be accumulated and amplified during the contour traversal, as shown in Fig. 2. This provides
more chances to distinguish regular shapes from irregular shapes. Our experiments also
confirm it with more accurate results by using F2 than FF.

A few properties of F2 can be also summarized according to the previous analysis and the
definition:

& The range of F2 index lies in [0, 1];
& Circles are the least irregular shapes with the smallest F2 index of zero.

Fig. 1 A user case study. a Case A: LEFT_CC view of A_1396_1; b Case B: RIGHT_MLO view of B_3016_1;
c energy distribution of case A and case B: B has more energy distributed in high frequency components than A
does, which matches the fact that contour B is rougher than A
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& Irregular shapes would have bigger F2 index than regular shapes due to the pattern of
energy distribution of r(t) sequences.

& F2 is able to tolerate noises at some level because the high frequency components are
suppressed by the division by their corresponding frequencies.

3.2 Other classifiers

Comparative analyses of F2 are performed with three other previously reported classifiers,
including Compactness Index (CI), Fractal Dimension (FD), and Fourier-descriptor-based
shape Factor (FF). These classifiers are briefly described in the following subsections.

3.2.1 Compactness Index (CI)

Compactness Index (CI) measures the efficiency of a contour enclosing a given area, defined
as CI=1−4πA/P2, where A is the enclosed area and P is the perimeter of the contour [11].
Similar to F2, circles are defined as the most compact 2D shapes because they have the
smallest index of zero. A higher CI value often implies the malignancy of a suspicious area due
to concavities or spicules [1].

3.2.2 Fractal Dimension (FD)

Fractal Dimension (FD) was initially developed to characterize complex geometric forms. FDs
can be derived from the self-similar dimension D, defined as (4) [14]. D could be estimated by
the slope of a plot of log(n) vs. log(1/s).

n ¼ 1

sD
ð4Þ

where n is the number of self-similar pieces exhibited in a self-similar pattern and s is related to
the measurement scale.

Fig. 2 Energy distribution of case A (LEFT_CC view of A_1396_1): comparing FF and F2
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One of commonly used method for approximating FD is the ruler method, which uses
different length of rulers to estimate the total length of a contour or pattern to different levels of
accuracy [18]. Our implementation results in comparable output to the theoretical values when
we tested in with Koch’s snowflakes (less than 0.3 % error).

3.2.3 Fourier-descriptor-based shape Factor (FF)

FF was designed to characterize the energy distribution of a contour’s coordinate sequence
[20]. The x-y coordinates of a contour are expressed as complex numbers in the form of x+yi,
and then Fast Fourier Transform (FFT) is applied to the complex numbers to get the Fourier
descriptor (FD) or the Fourier series (A(t)). The FF is defined as:

FF ¼
XN=2

t¼−N=2þ1

E tð Þk k
kj j

. XN=2

t¼−N=2þ1

E tð Þk k ð5Þ

where

E tð Þ ¼
0; k ¼ 0

A tð Þ=A 1ð Þ; k ¼ 1; 2;…;N=2þ 1

A t þ Nð Þ=A 1ð Þ; k ¼ −1;−2;…;−N=2þ 1

8<
: ð6Þ

3.3 Combination of classifiers

Since each classifier captures different characteristics of shapes, a proper combination of
classifiers may lead to better performance if they are complementary to each other. Each two
classifiers are combined together to form a new classifier for investigating the possibilities of
achieving better performance. In this work, we apply a Radial Basis Function (RBF) network1 to
automatically learn the combination model. Briefly speaking, given two functions f and g
(inputs), and expected output, a RBF network is to learn a new function φ(f, g) (output), such
that the value ofφ is close to the expected output. In our work, the inputs to the RBF network are
the results of two classifiers, and the expected outputs are the diagnosis results of breast masses
(benign/malignant). The output of the network φ is then used as the new (combined) classifier.

3.4 Evaluation methodology

3.4.1 Datasets of mass contours

The Fourier Irregularity Index concept developed in this study is applied to a set of mammo-
grams, which are provided by the Digital Database for Screening Mammography (DDSM) [7].
This database includes digitized film mammograms from approximately 2,500 patients. Each
study includes two images (craniocaudal and mediolateral oblique) of each breast. Associated
pixel-level “ground truth” information are available including the locations and types of
suspicious regions, as well as patient information and image acquisition information. An
expert radiologist has provided an interpretation of each mammogram with identified abnor-
malities. Each abnormality has been described with BIRADS terminology including the lesion

1 Our implementation is based on package PyRadbas: http://cybercase.github.io/pyradbas/
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type, lesion description, and final assessment. Corresponding pathology findings are available.
Outlines of suspicious regions are provided on the mammograms, derived from markings
made on the film by an experienced radiologist. Each lesion boundary is encoded in Freeman
Chain Code of Eight Directions [5]. For simplicity in this work, only three types of mass
shapes were included in the testing data set: round, oval and irregular. In total, 418 mass were
investigated in our study, including 190 malignant lesions and 228 benign lesions, with details
shown in Table 1. In this study, no parameter derivation or classifier training was involved in
the evaluation procedure; in other words, the dataset was not split into training and testing
subsets.

3.4.2 Evaluation protocol

Each of the 418 masses obtained from DDSM is evaluated using the F2 and three other
classifiers: Compactness, Fractal Dimension, and Fourier Factor. To illustrate the characteris-
tics and effectiveness of these classifiers, the sensitivity, specificity, accuracy, and area under
the curve (Az) for Receiver Operating Characteristic (ROC) are computed. An ROC curve is a
plot of a test’s sensitivity versus its false positive rate (FPR or 1-specificity), which are plotted
on the vertical axis and the horizontal axis, respectively. The sensitivity and the specificity are
given by (7) and (8). Each point on the curve is obtained with a different decision threshold.
The Az index is usually referred as a useful indicator of diagnostic performance [28]. The range
of Az lies in [0, 1] and larger Az means better performance (Az =1 means perfect diagnostic
accuracy achieved):

sensitivity ¼ TPs= TPsþ FNsð Þ ð7Þ

specificity ¼ TNs= TNsþ FPsð Þ ð8Þ
where TP is true positive, FN is false negative, TN stands for true negative, and FP stands for
false positive.

In this study, the sensitivity, specificity, and accuracy of each classifier are obtained at the
closest point to (0, 1) of the ROC curve. The area under the ROC curve (Az) is computed by
using trapezoidal rule.

3.4.3 Significance of improvement

Significance tests are performed to verify whether a classifier actually outperforms the other.
As recommended in [19], a binomial test is used to compare two classifiers, which is based on

Table 1 Dataset of breast mass
contours Pathology Shape Count

Benign ROUND 58

OVAL 168

ROUND-OVAL 2

Malignant IRREGULAR 143

IRREGULAR-ARCHITECTURAL_
DISTORTION

47

Total 418
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disagreements on outputs. Specifically, let s be the number of instances that classifier A
produces correct outputs, but classifier B produces incorrect outputs (A>B). Similarly, f be
the number of instances that classifier A produces incorrect outputs, but B produces correct
outputs (B>A). Among these different outputs, A has chance to perform better than B if the
expected value E(s)>E(f). In other words, if A and B perform equally well (A=B), then E(s)=
E(f). Therefore, our null hypothesis is: H0: A=B. H0 will be rejected if its likelihood (p) is
smaller than the significant level, with which we can conclude classifier A performs better than
classifier B. The value of p is computed using the binomial distribution (9).

p ¼
Xsþ f

i¼s

sþ fð Þ!
i! sþ f −ið Þ!0:5

sþ f ð9Þ

4 Results and discussion

Figure 1(a) and (b) show the typical contours of benign and malignant breast mass, respec-
tively. The red-black lines are the outlines for the suspicious regions which are derived from
markings made on the mammogram by an experienced radiologist [7]. The shape of benign
mass (Fig. 1(a)) appears to be regular and smooth, whereas the malignant mass appears more
irregular than the benign one.

To investigate if the aforementioned shape descriptors are suitable for classifying breast
masses, significance tests are performed on the statistics of the descriptors. The average F2 for
192 malignant and 228 benign masses were 0.15 and 0.30, respectively. As it is designed,
larger F2 value indicates more irregular or severer malignancy. The chi-squared test between
benign and malignant of F2 produces a significance level of 5 % (p<0.05), indicating that F2 is
suitable to effectively distinguish between benign and malignant masses. The average com-
pactness indexes of benign and malignant masses are 0.22 and 0.54, respectively (p<0.05). It
shows that there is more irregularity along the contours of malignant masses. The fractal
dimension (FD) and the Fourier-descriptor-based shape Factor (FF) also exhibited that there
are significant difference between benign and malignant masses, which makes them desirable
to characterize breast masses. The average values of FD for benign and malignant masses are
1.06 and 1.13, respectively and that of FF were 0.82 and 0.68 (for both cases, p<0.05).

Fig. 3 ROC Curve when applying different classifiers to distinguish benign and malignant breast
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Areas under the ROC curves (Az) are computed to evaluate the performance of each
classifier for benign/malignant classification. The results are shown in Fig. 3 and Table 2.
As mentioned in Section III, the sensitivity, specificity and accuracy are determined by the
closest point to (0, 1) on the ROC curve, and the Az is calculated by using trapezoidal rule. A
larger Az indicates that the classifier achieves better performance in terms of sensitivity or
specificity for characterizing benign and malignant breast masses.

As shown in Table 2, the results of the reported classifiers are similar to those in related
literatures. Since the contours are tracked by an experienced radiologist, the negative impacts
of noises to the compactness index are reduced. As a result, the compactness index gives a
relatively high sensitivity (0.91) and a satisfactory specificity (0.89) with Az index of 0.96. The
overall accuracy of CI is 89.7 %. FD achieves a relatively accurate classification results with
an accuracy of 90.9 %. One of the reasons that FD has the lowest sensitivity (0.90) is its
insensitivity to significant structural irregularity. One of the advantages of FF—the tolerance
of noise along contours—may be not perfectly presented in this study because the contours
used in experiments are manually generated, as mentioned previously. Though the same results
were achieved by CI, FF still yields a higher Az value, which makes it more advantageous than
CI. As discussed in Section III, the concepts of FF and F2 are similar to each other: both
methods measures irregularity based on energy distribution. One difference is that FF uses
complex coordinates of contour points, whereas F2 uses origin distances, which is attributable
to the performance gains of F2. The variations along the contours are accumulated and
amplified, which helps F2 to recognize the existence of irregularity on these contours.
Table 3 shows the significance tests of comparisons of classifiers. As indicated by the small
differences in accuracy, CI, FD, FF fail to prove one performing better than another (p>0.19).
On the other hand, the results confirms that the proposed F2 outperforms the other three
(p<0.01). In Sum, F2 performed best among these classifiers with having the highest accuracy
(94.3 %), sensitivity (0.95), specificity (0.94), and the largest area under the ROC curve (0.98).

In order to investigate the possibilities of further improvement, each two classifiers are
combined as a new classifier in this study. Figure 4 shows the results of classification based on
an exact Radial Basis Function Network (RBFN), as described in Section III. Correctly
classified benign and malignant masses are denoted by using symbols “■” and “○”,

Table 2 Performance of each
classifier in terms of sensitivity,
specificity, accuracy, and area under
the ROC curve

Classifier Accuracy Sensitivity Specificity Az

CI 89.7 % 0.91 0.89 0.96

FD 90.9 % 0.90 0.92 0.97

FF 89.7 % 0.91 0.89 0.97

F2 94.3 % 0.95 0.94 0.98

Table 3 Significance test of per-
formance improvement Classifier A Classifier B s f p(A>B)

FF CI 23 23 0.5585

FD CI 22 17 0.2612

F2 CI 29 10 0.0017

FD FF 13 8 0.1917

F2 FF 27 8 0.0009

F2 FD 23 9 0.0100
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respectively, whereas misclassified masses are denoted by symbols “▲”. The results are also
presented in Table 4. The sensitivity, specificity, accuracy, and area under the ROC curve are
calculated in the same way as described previously.

The performances of the combinations of classifiers are presented in Table 4. Bold data shows
that it has the highest rate in performance. As shown in the table, by combining with F2, classifiers,
CI, FF, and FD, performed better than using them individually. Specifically, the combination of CI
and F2 is improved about 0.7 % in accuracy, 1 % both in specificity, and area under the ROC curve,
comparing to use F2 alone FF provides the highest sensitivity of 0.96 when it is combined with F2.
As shown in Table 5, the improvement of this combination is not so significant because they have
similar physical characteristics (energy distribution), whereas the combination of CI and FF results
in the highest improvement in accuracy (about 2.4%) because they are supposed to capture different
characteristics of contours (compactness nature vs. energy distribution). Similar observation can be
made on the combination of CI and FD. The result of improvement significance tests confirm the
possibility (w/p<0.05) that the combinations of classifiers may perform better comparing to single
classifiers. One exception is the comparison ofF2. Themost accurate classifier combination (F2,CI)
perform slightly better thanF2, but only differed in nine cases (s=6, f=3), which was not significant

a F2,CI b F2,FD c F2,FF

d CI,FD e CI,FF f FD,FF

Fig. 4 Classification results of combined classifiers. Symbols “■”, “○”, and “▲” denote data points corre-
sponding to benign, malignant and misclassified breast masses, respectively

Table 4 Performance of combined
classifier in terms of sensitivity,
specificity, accuracy, and area under
the ROC curve

Combined classifier Accuracy Sensitivity Specificity Az

F2,CI 95.0 % 0.94 0.96 0.99

F2,FD 94.5 % 0.95 0.94 0.99

F2,FF 94.3 % 0.96 0.93 0.99

CI,FD 92.8 % 0.93 0.93 0.98

CI,FF 92.1 % 0.94 0.90 0.98

FD,FF 90.9 % 0.92 0.90 0.97

Multimed Tools Appl



enough (p=0.25) to conclude that the combination (F2, CI) would actually perform better. We
believed that a larger test set would be able to draw a more confident conclusion. In general, we
believe the results F2 achieves make it possible to be applied to benign and malignant masses
classification.

Table 5 Significance test of per-
formance improvement for com-
bined classifiers

Classifier A Classifier B s f p(A>B)

F2,CI CI,FF 18 6 0.0113

F2,CI CI,FD 19 9 0.0436

F2,CI F2,FF 7 4 0.2744

F2,CI F2,FD 7 6 0.5

F2,CI FD,FF 54 9 3.1E-09

CI,FD FD,FF 44 9 6.1E-07

CI,FD CI,FF 11 9 0.4119

F2,FF FD,FF 49 7 3.7E-09

F2,FF CI,FF 18 9 0.0610

F2,FF CI,FD 17 10 0.1239

CI,FF FD,FF 40 7 5.4E-07

F2,FD FD,FF 50 6 5.1E-10

F2,FD CI,FF 19 8 0.0261

F2,FD CI,FD 16 7 0.0466

F2,FD F2,FF 3 1 0.3125

FD,FF CI 19 42 0.9990

FD,FF FF 10 33 0.9999

FD,FF FD 12 40 1.0

FD,FF F2 9 51 1.0

CI,FF CI 21 11 0.0551

CI,FF FF 13 3 0.0106

CI,FF FD 15 10 0.2122

CI,FF F2 10 19 0.9693

CI,FD CI 22 10 0.0251

CI,FD FF 21 9 0.0219

CI,FD FD 10 3 0.0461

CI,FD F2 10 17 0.9390

F2,FF CI 29 10 0.0017

F2,FF FF 26 7 0.0007

F2,FF FD 23 9 0.0100

F2,FF F2 2 2 0.6875

F2,FD CI 28 7 0.0003

F2,FD FF 27 6 0.0002

F2,FD FD 23 7 0.0026

F2,FD F2 3 1 0.3125

F2,CI CI 30 8 0.0002

F2,CI FF 28 6 0.0001

F2,CI FD 25 8 0.0023

F2,CI i F2 6 3 0.2539
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5 Conclusion

In this paper we have proposed a novel irregularity measurement (Fourier Irregularity Index:
F2) based on Fourier Transform of the origin distance. In our experiments, F2 has exhibited
high classification accuracy, making it possible to be integrated into a computer-aided diag-
nosis (CADx) system, as an effective factor for benign/malignant breast mass classification.
Furthermore, we have also explored the possibilities of performance improvement of classifier
pairs. The classifier pairs have been found that they are able to provid higher classification
accuracy than the single classifiers. We believe that the outputs of this study and the proposed
measurement may provide a valuable reference of malignancy diagnosis of breast masses to
radiologists.

6 Future works

As mentioned earlier in this paper, the contours used in this study are tracked manually by a
radiologist. Because of this, biases may be produced. Thus, the measurement still needs to be
evaluated when dealing with automatic contour extraction algorithms. Furthermore, we still
need a larger dataset to gain more confidence before we put it into practice.
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