More Variable Scope

Scope: Local variables

* The scope of a variable 1s the portion of the code
in which the variable 1s accessible

 In C, local variables are declared 1inside a block
(hence, internal to a function)

— The scope of these variables 1s the reminder of the
block

e __.or1n a function declaration

— The scope of these variables 1s the remainder of the
function

Scope: Global variables

 In C, global variables are defined outside of
(external to) blocks and functions
— Could be 1n header (.h) files, but shouldn’t be!

* The scope of a global variable 1s the file 1n which
1t 1s declared

— Can extend the scope of the global variable to other

files by using an extern declaration _—~ Tells the compiler that
/ int g x1s global and

extern int g_x; defined in another file

No memory allocated for g x here

or use £1ib.h header file

Global variables

flib.c fl.c f2.c
int g x; extern int g x; extern int g x;
int gy = 0; extern int g y; extern int g y;

» Exactly one declaration of a global variable omits

the word extern

— This 1s where the variable 1s mnitialized (optional)

 Declarations 1n all other files “must” use extern

— There are exceptions — don’t ask...!

Strong and Weak Symbols

m Program symbols are either strong or weak
® Strong: procedures and initialized globals
" Weak: uninitialized globals

pl.c p2.c
strong * int foo=5; int foo; |+
strong » pl() { p2() { «
} }

weak

strong

Linker’s Symbol Rules

m Rule 1: Multiple strong symbols are not allowed

® Each item can be defined only once

B Otherwise: Linker error

m Rule 2: Given a strong symbol and multiple weak symbol,
choose the strong symbol
® References to the weak symbol resolve to the strong symbol

m Rule 3: If there are multiple weak symbols, pick an arbitrary
one

® (Can override this with gcec —fno-common

Linker Puzzles

int x;

p1() {} p1() {} Link time error: two strong symbols (p1)
int x; int x; References to x will refer to the same

pl() {} p2() {} uninitialized int. Is this what you really want?
int x; double x; . . : : |

int y; p2() {} erltes to x in p2 might overwrite y!

pL() {} Evil

int x=7; double x; Writes to x in p2 will overwrite y!

pl() {}

int x=7; int x; References to x will refer to the same initialized
pl() {} p2() {} variable.

Nightmare scenario: two identical weak structs, compiled by different compilers
with different alighment rules.

Parameter Passing Style

Parameter Passing Techniques

e Pass by Value
e Pass by Reference

e Pass by Pointer

Example: Swapping two values

int main()

{
int nl, n2;
cout << "Enter two numbers: " << flush;
cin >> nl >> n2;
if(n1 > n2)
Swap(n1, n2);
cout << "Sorted order: " << nl << ", " << n2 << endl;
return 0;
}

How to write swap()?

Pass by Value

void Swap(int nl, int n2)

{

int temp = nl;

nl
nz

nZ;
temp;

Pass by Reference

void Swap(int& nl, int& n2)

1
int temp = nl
nl = n2;
n2 = temp

Pass by Pointer

void Swap(int* nl, int* n2)

{

int
*nl
*1 2

temp = *nl;

*N2;
temp;

Swap without using temp variable

old Swap(1nt &nl, 1nt &nZ2)
nl = nl™"nZ;
ng = nl™"nd;
nl = nl™"nZ;

nZ

i
1

i

.':'

i
i P R I

i
Fd
|

More Functions

Stack Frame structure

A procedure call involves passing both data (in the
form of procedure parameters and return values) and
control from one part of a program to another.

In addition, it must allocate space for the local
variables of the procedure on entry and deallocate
them on exit.

Most machines, including 1A32, provide only simple
instructions for transferring control to and from
procedures.

The passing of data and the allocation and deallocation
of local variables is handled by manipulating the
program stack.

Stack Frame structure

IA32 programs make use of the program stack
to support procedure calls.

The machine uses the stack to pass procedure
arguments, to store return information, to
save registers for later restoration, and for

local storage.

The portion of the stack allocated for a single
procedure call is called a stack frame.

Figure 3.21

Stack frame structure. The
stack is used for passing
arguments, for storing
return information, for
saving registers, and for
local storage.

Stack “bottom™

Increasing
address
+4+4n Argument n
+8 Argument 1
+4 Return address

Frame pointer
Hebp i

—4

Stack pointer

Saved Yebp

Saved registers,

local varables,
and
temporaries

Yesp

Argument
build area

Stack “top”

- Earlier frames

= Caller's frame

= Current frame

int swap_add(int *xp, int #*yp)

2 {

3 int x = *xp;
4 int y = *yp;
5

¥Ep = ¥;

7 *Vp = X;

B return x + vy;
9 }

int caller()

2 A

13 int argl = 534;

14 int arg2 = 10567;

15 int sum = swap_add(kargl, &karg2);
16 int diff = argl - arg2;

18 return sum * diff;

19}

Figure 2.22 Example of procedure definition and call.

Just before call In body of

) to swap_add swap_add
Frame pointer . .
hebp —— (0| Saved Jebp Saved Yebp
— —4 argl argl
——8 arg2 arg2
X Stack frame J
Unused for caller Unused
+4 karg2 —= | +12 &arg2
hesp J:: 0 &argl | +8 fargi
Stack pointer +4 | Return address
Frame pointer %ebp —— 0| Saved Lebp Stack frame
Stack pointer fesp —» Saved Yebx | | [OF S¥2p-add

Figure 3.24 5tack frames for caller and swap_add. Procedure swap_add retrieves
its arguments from the stack frame for caller.

