
Introduction to Pointers
Darin Brezeale

The University of Texas at Arlington

Introduction to Pointers – p. 1/18



Addresses in Memory
Everything in memory has an address. C allows us to
obtain the address that a variable is stored at. In fact,
if you have usedscanf() you have already done
this, for example,

scanf("%d", &year);

Introduction to Pointers – p. 2/18



Addresses in Memory
Preceding a variable name by an ampersand, known
as theaddress operator, will return its address:

#include <stdio.h>

int main(void)

{

int x;

/* notice the format specifier in printf() for an

address is %p */

printf("The address for the memory allocated to x is %p\n", &x);

}

produces
The address where x will store its value is 0xbfc54a04

Introduction to Pointers – p. 3/18



Number Systems
The following number systems are found in computer
science:

Common Name Base Digits
binary 2 01
octal 8 01234567
decimal 10 0123456789
hexadecimal 16 0123456789ABCDEF

In the preceding example, we can tell that the number
was in hexadecimal because it began with0x.

Introduction to Pointers – p. 4/18



Pointers
A pointer is a variable whose contents are the address
of another variable.

int num = 3;

int* numptr; /* numptr is a pointer */

printf("content of num is %d\n", num);

printf("address of num is %p\n", &num);

numptr = &num; /* initialize numptr with the

address of num */

printf("content of numptr is %p\n", numptr);

produces
content of num is 3

address of num is 0x7ffffffcbba4

content of numptr is 0x7ffffffcbba4

Introduction to Pointers – p. 5/18



Pointers
Pointers allow us to modify locations in memory by
prefixing an initialized pointer with an asterisk,
known as thedereference operator.

int num = 3;

int* numptr = &num;

printf("content of num is %d\n", num);

printf("content pointed to by numptr is %d\n", *numptr);

/* we can use the pointer to change what it points to */

*numptr = 99;

printf("content of num is now %d\n", num);

produces
content of num is 3

content pointed to by numptr is 3

content of num is now 99

Introduction to Pointers – p. 6/18



Pointers
We can use pointers in much the same way we do the
variables that they point to.

int a = 3, b = 3; /* a and b start with equal values */

int* bptr = &b; /* we’ll modify b using a pointer */

a += 4;

*bptr += 4;

printf("a is %d, b is %d\n", a, b);

a++;

(*bptr)++; /* parentheses are necessary here to override

the order of precedence */

printf("a is %d, b is %d\n", a, b);

produces
a is 7, b is 7

a is 8, b is 8

Introduction to Pointers – p. 7/18



Pointer Variable Types
Pointers are variables and they have their own type.

Example:

int* numptr;

numptr has a type ofint* or pointer-to-int and
should be initialized to point to a variable of type
int.

Introduction to Pointers – p. 8/18



Incrementing Pointers
If ptr is a pointer, what doesptr++ mean?

This increments the address in the pointer to the
address of the next variable of the type pointed to by
the pointer. Example:

double num = 99; /* doubles use 8 bytes of memory */

double* ptr = &num;

printf("ptr stores the address %p\n", ptr);

ptr++;

printf("now ptr stores the address %p\n", ptr);

produces

ptr stores the address 0x7fff63993b00

now ptr stores the address 0x7fff63993b08

Introduction to Pointers – p. 9/18



Pointers to Pointers
Pointers can contain the address of another pointer.

int num = 5;

int* numptr = &num;

int** ptr2 = &numptr; /* notice the two asterisks */

Introduction to Pointers – p. 10/18



Comparing Pointers
We need to differentiate between comparing the
contents of pointers and the variables that pointers
point to. To compare the addresses stored in pointers,
use

if(numptr == valptr)

To compare the values of the variables that pointers
point to, use

if(*numptr == *valptr)

Introduction to Pointers – p. 11/18



Initializing Pointers to NULL
• When a pointer variable is created, its initial

value is whatever is in its allocated memory
location just like other variables.

• A pointer may be initialized with an address later
in a program based upon certain conditions.

• Sometimes we wish to initially set the pointer to
a value that later can be used to determine if the
pointer was never assigned an address.

• The value we use for this is NULL (in uppercase).

Introduction to Pointers – p. 12/18



Initializing Pointers to NULL

#include <stdio.h>

int main(void)

{

int num = 3;

int* numptr;

numptr = NULL;

if (numptr != NULL)

printf("num is %d\n", *numptr);

else

printf("Oops. numptr has a value of %p\n", numptr);

}

produces
Oops. numptr has a value of 00000000

Introduction to Pointers – p. 13/18



Pointers and Functions
Previously, we made function calls like this:

int x = 3;
int y;
y = do_something(x);

In this case, a copy of the variable’s value are passed
to the function in a process calledpass by value.

Changes made to the copy do not affect the original
value.

Introduction to Pointers – p. 14/18



Pointers and Functions
Pointers allow us to use a process calledpass by
reference, in which we will be able to change the
value of the original variable. We do this by passing
the variable’s address to the function.

Introduction to Pointers – p. 15/18



Pointers and Functions
#include <stdio.h>

void tripleNum(int*); /* notice the function argument

has a type of int * */

int main(void)

{

int num = 8;

printf("before the function call, num is %d\n", num);

tripleNum(&num); /* pass address */

printf("after the function call, num is %d\n", num);

}

void tripleNum(int* aptr) /* pass by reference */

{

*aptr = 3 * *aptr; /* first asterisk is for multiplication,

second is to dereference the pointer */

}

produces
before the function call, num is 8

after the function call, num is 24

Introduction to Pointers – p. 16/18



Arrays of Pointers
A pointer is a variable type and we can have an array
of pointers just as we have had arrays of other variable
types.

Introduction to Pointers – p. 17/18



Arrays of Pointers
#include <stdio.h>

int main(void)

{

int i;

char* text[4] = {"some string", /* text[0] */

"another string", /* text[1] */

"word"}; /* text[2] */

text[3] = "\nassign this way";

for(i = 0; i < 4; i++)

printf("%s\n", text[i]); /* note the %s format specifier */

}

some string

another string

word

assign this way

Introduction to Pointers – p. 18/18


	Addresses in Memory
	Addresses in Memory
	Number Systems
	Pointers
	Pointers
	Pointers
	Pointer Variable Types
	Incrementing Pointers
	Pointers to Pointers
	Comparing Pointers
	Initializing Pointers to NULL
	Initializing Pointers to NULL
	Pointers and Functions
	Pointers and Functions
	Pointers and Functions
	Arrays of Pointers
	Arrays of Pointers

