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Addresses in Memory
Everything in memory has an address. C allows us to
obtain the address that a variable is stored at. In fact,
if you have usedscanf() you have already done
this, for example,

scanf("%d", &year);
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Addresses in Memory
Preceding a variable name by an ampersand, known
as theaddress operator, will return its address:

#include <stdio.h>

int main(void)

{

int x;

/* notice the format specifier in printf() for an

address is %p */

printf("The address for the memory allocated to x is %p\n", &x);

}

produces
The address where x will store its value is 0xbfc54a04
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Number Systems
The following number systems are found in computer
science:

Common Name Base Digits
binary 2 01
octal 8 01234567
decimal 10 0123456789
hexadecimal 16 0123456789ABCDEF

In the preceding example, we can tell that the number
was in hexadecimal because it began with0x.
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Pointers
A pointer is a variable whose contents are the address
of another variable.

int num = 3;

int* numptr; /* numptr is a pointer */

printf("content of num is %d\n", num);

printf("address of num is %p\n", &num);

numptr = &num; /* initialize numptr with the

address of num */

printf("content of numptr is %p\n", numptr);

produces
content of num is 3

address of num is 0x7ffffffcbba4

content of numptr is 0x7ffffffcbba4
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Pointers
Pointers allow us to modify locations in memory by
prefixing an initialized pointer with an asterisk,
known as thedereference operator.

int num = 3;

int* numptr = &num;

printf("content of num is %d\n", num);

printf("content pointed to by numptr is %d\n", *numptr);

/* we can use the pointer to change what it points to */

*numptr = 99;

printf("content of num is now %d\n", num);

produces
content of num is 3

content pointed to by numptr is 3

content of num is now 99
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Pointers
We can use pointers in much the same way we do the
variables that they point to.

int a = 3, b = 3; /* a and b start with equal values */

int* bptr = &b; /* we’ll modify b using a pointer */

a += 4;

*bptr += 4;

printf("a is %d, b is %d\n", a, b);

a++;

(*bptr)++; /* parentheses are necessary here to override

the order of precedence */

printf("a is %d, b is %d\n", a, b);

produces
a is 7, b is 7

a is 8, b is 8
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Pointer Variable Types
Pointers are variables and they have their own type.

Example:

int* numptr;

numptr has a type ofint* or pointer-to-int and
should be initialized to point to a variable of type
int.
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Incrementing Pointers
If ptr is a pointer, what doesptr++ mean?

This increments the address in the pointer to the
address of the next variable of the type pointed to by
the pointer. Example:

double num = 99; /* doubles use 8 bytes of memory */

double* ptr = &num;

printf("ptr stores the address %p\n", ptr);

ptr++;

printf("now ptr stores the address %p\n", ptr);

produces

ptr stores the address 0x7fff63993b00

now ptr stores the address 0x7fff63993b08
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Pointers to Pointers
Pointers can contain the address of another pointer.

int num = 5;

int* numptr = &num;

int** ptr2 = &numptr; /* notice the two asterisks */
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Comparing Pointers
We need to differentiate between comparing the
contents of pointers and the variables that pointers
point to. To compare the addresses stored in pointers,
use

if(numptr == valptr)

To compare the values of the variables that pointers
point to, use

if(*numptr == *valptr)

Introduction to Pointers – p. 11/18



Initializing Pointers to NULL
• When a pointer variable is created, its initial

value is whatever is in its allocated memory
location just like other variables.

• A pointer may be initialized with an address later
in a program based upon certain conditions.

• Sometimes we wish to initially set the pointer to
a value that later can be used to determine if the
pointer was never assigned an address.

• The value we use for this is NULL (in uppercase).
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Initializing Pointers to NULL

#include <stdio.h>

int main(void)

{

int num = 3;

int* numptr;

numptr = NULL;

if (numptr != NULL)

printf("num is %d\n", *numptr);

else

printf("Oops. numptr has a value of %p\n", numptr);

}

produces
Oops. numptr has a value of 00000000
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Pointers and Functions
Previously, we made function calls like this:

int x = 3;
int y;
y = do_something(x);

In this case, a copy of the variable’s value are passed
to the function in a process calledpass by value.

Changes made to the copy do not affect the original
value.
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Pointers and Functions
Pointers allow us to use a process calledpass by
reference, in which we will be able to change the
value of the original variable. We do this by passing
the variable’s address to the function.
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Pointers and Functions
#include <stdio.h>

void tripleNum(int*); /* notice the function argument

has a type of int * */

int main(void)

{

int num = 8;

printf("before the function call, num is %d\n", num);

tripleNum(&num); /* pass address */

printf("after the function call, num is %d\n", num);

}

void tripleNum(int* aptr) /* pass by reference */

{

*aptr = 3 * *aptr; /* first asterisk is for multiplication,

second is to dereference the pointer */

}

produces
before the function call, num is 8

after the function call, num is 24
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Arrays of Pointers
A pointer is a variable type and we can have an array
of pointers just as we have had arrays of other variable
types.
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Arrays of Pointers
#include <stdio.h>

int main(void)

{

int i;

char* text[4] = {"some string", /* text[0] */

"another string", /* text[1] */

"word"}; /* text[2] */

text[3] = "\nassign this way";

for(i = 0; i < 4; i++)

printf("%s\n", text[i]); /* note the %s format specifier */

}

some string

another string

word

assign this way
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