
Loops
Darin Brezeale

The University of Texas at Arlington

Loops – p. 1/17

Increment/Decrement Oper.
The following operators are available in C for
incrementing and decrementing variables by a value
of one:

++ increment
-- decrement

Example: We could use
a = a + 1;

or
a++;

Loops – p. 2/17

Increment/Decrement cont.
These operators can be placed before (prefix) or after
(postfix) a variable:

int x = 5;

x--;

/* x has a value of 4 here */

or
int x = 5;

--x;

/* x has a value of 4 here */

Both reducex by one. Later we will see examples
where the choice of prefix or postfix matters.

Loops – p. 3/17

Basic Concepts – Loops
C has the following loop constructs:

• while
• for
• do-while

Loops – p. 4/17

Basic Concepts – Loops
Loops allow us to repeat a task. We need some way to
determine when the loop should terminate. This could
be

• after a predetermined number of iterations
• when some condition has been met

Loops – p. 5/17

Basic Concepts – Loops
When the loop will terminate after a predetermined
number of iterations, we need:

• a counting variable
• a test of that variable
• to increment/decrement that variable

Loops – p. 6/17

while loop
The basic form of thewhile loop is

while(test)
do_something;

As long astest is true, the loop will repeat.

To do multiple things in each iteration, we use curly
braces:

while(test)
{

do_something;
}

Loops – p. 7/17

while loop
while loop that stops after predetermined number of
iterations:

#include <stdio.h>

int main(void)

{

int i = 1, sum = 0;

while(i <= 5)

{

sum = sum + i;

i++;

}

printf("sum of the integers 1 to %d is %d\n", i-1, sum);

}

/* sum of the integers 1 to 5 is 15 */

Loops – p. 8/17

while loop
There are many occasions in which we don’t know in
advance how many times the loop should repeat, but
we do know under what conditions the loop should
terminate.

Loops – p. 9/17

for loop
Thefor loop has the following form:

for(expression1; expression2; expression3)

do_something;

where

expression1 initializes the counter

expression2 is the condition for stopping

expression3 is the method of incrementing the counter at

the end of the loop

Note1: Each expression is optional, but the semicolons are not.

Note2: expression3 is always evaluated at the bottom of the loop.

Loops – p. 10/17

for loop example
int i;
for(i = 1; i <=3; i++)

printf("i is %d\n", i);

which produces
i is 1
i is 2
i is 3

Loops – p. 11/17

for cont.
The counter variable doesn’t have to be used in the
statements that are part of thefor loop.

int i;
for(i = 10; i > 6; i--)

printf("Tick\n");

which produces

Tick
Tick
Tick
Tick

Loops – p. 12/17

for cont.
Here is thefor loop version of thewhile loop we
saw earlier:

#include <stdio.h>

int main(void)

{

int i, sum = 0;

for(i = 1; i <= 5; i++)

sum = sum + i;

printf("sum of the integers 1 to %d is %d\n", i-1, sum);

}

/* sum of the integers 1 to 5 is 15 */

Loops – p. 13/17

do-while loop
Thedo-while loop differs from thewhile loop in
that the body will be visited once before the test is
evaluated. It has the form:

do
do_something;

while(test);
or

do
{

do_something;
}
while(test);

Loops – p. 14/17

Changing loop behavior
Sometimes we want to end a loop early or move on to
the next value. We have two ways of doing this:

1. continue – jump to the very end of the current
loop

2. break – get out of the current loop completely

Loops – p. 15/17

continue Statement
/* partial program */

for(i = start; i <= stop; i++)

{

if(i%2 == 0 && i%3 == 0 && i%5 == 0 && i%7 == 0)

{

printf("%d is evenly divisible by 2, 3, 5, and 7\n", i);

continue;

}

if(i%2 == 0)

printf("%d is evenly divisible 2\n", i);

if(i%3 == 0)

printf("%d is evenly divisible 3\n", i);

if(i%5 == 0)

printf("%d is evenly divisible 5\n", i);

if(i%7 == 0)

printf("%d is evenly divisible 7\n", i);

}
Loops – p. 16/17

break Statement
#include <stdio.h>

int main(void)

{

int i, k;

for(i = 1; i < 5; i++)

for(k = 1; k < 5; k++)

if(k == i)

{

printf("%d\n", k);

break;

}

else

printf("%d,", k);

}

produces
1

1,2

1,2,3

1,2,3,4

Loops – p. 17/17

	Increment/Decrement Oper.
	Increment/Decrement cont.
	Basic Concepts -- Loops
	Basic Concepts -- Loops
	Basic Concepts -- Loops
		exttt {while} loop
		exttt {while} loop
		exttt {while} loop
		exttt {for} loop
		exttt {for} loop example
		exttt {for} cont.
		exttt {for} cont.
		exttt {do-while} loop
	Changing loop behavior
		exttt {continue} Statement
		exttt {break} Statement

