
Dr. Na Li
CSE @ UTA

Jan. 22, 2013

 if statement gives you choice of either executing a
statement or skipping it

 The basic format of the if statement is
 if (condition_is_true)
 do_something;
 // condition_is_true should be an expression

 //need the parenthesis for the expression
 // If expression evaluates to true (nonzero), do something. Otherwise, it is
skipped. Normally, expression is relational expression. But in general, any
expression will work since it has a value, which can be mapped to true or false.

 Examples
 int x;
 int y = 6;
 scanf (“%d”, &x);
 if (x >= 2)
 y = 10;
 printf(“y is %d.\n”, y);

x >= 2

x = 10

if statement

printf

true

false

 indent style - a convention governing the
indentation of blocks of code to convey the
program's structure

 Visual Studio manages indent automatically
by default

 Manually, “Tab” key on the keyboard will
help

 Handle more than one statements when the
condition is true

 Create a block of statements by using braces.
 Example

 if (x >= 2)

 {

 y = 10;

 printf("y is now %d", y);

 }

 next statement;

// with one statement, you can use “{}”, but it’s not
necessary.

// without the braces what’s going to happen here?

 To do one thing if a condition is true but another
if the condition is false - if-else statement:

 Basic format of if-else statement
if (expression_is_true)

 do_something (if statement);

else

 do_something_else (else statement);

 Example:
int x = 10;

if(x>=2)

 printf("x>=2\n");

else

 printf("x<2\n");

your next statement;

x >= 2

x = 10

if
statement

next
statement

true
else

statement

false

 else statement must have
an if statement to match

 Not allowed to have any
statement between if
statement and else
statement (except the cases
of nested if-else)

 Example: (a wrong
program!)

int x = 4;

int y;

if (x >= 2)

 y = 10;

 printf("y is now 10.\n");

 else

 printf("y is not assigned.\n");

 else statement can
also be a block of
statements, but
remember to give “{ }”

 Example:
else

{

 y = y + 2;

 printf("y is not

 assigned.\n");
}

 Have a second
conditional statement
in when the first
condition is true

 if statements can be
nested

 Example :
 if (x < 10)

 if(y < 3)

 z = x + y;

 your next statement
comes here;

 // To assign a value of
(x+y) to z only if x > 10 and
y < 3.

x < 10

x = 10

 next
statement

true

false

y < 3

true

false

Z=x+y

/* indentation is used to show correct logic; the else goes with the
nearest unmatched if statement within a block , where block is
defined by using braces.*/
 Examples: (nested in if statement)

(1) if (x == 13)
 if (y == 52)
 printf("Test1.\n");
 else
 printf("Test2.\n");
 printf("Test3.\n");
(2) if (x == 13)
 if (y== 52)
 printf("Test1.\n");
 else
 printf("Test2.\n");
 printf("Test3.\n");
 (3) if (x == 13)
 if (y== 52)
 printf("Test1.\n");
 else
 printf("Test2.\n");
 printf("Test3.\n");

(4) if (x == 13)

 {

 if (y == 52)

 printf("Test1.\n");

 else

 printf("Test2.\n");

 }

 printf("Test3.\n");

(5) if (x == 13)

 {

 if (y== 52)

 printf("Test1.\n");

 }

 else

 printf("Test2.\n");

 printf("Test3.\n");

 (1)(2)(3)(4) are the same, but not (5)
 (2) and (3) are not good program styles, you should use indent to convey

your code block, like what (1) does, or use the braces like the (4)
example.

 Examples: (nested in else statement)
 (1) if (x == 13)
 printf(“x == 13.\n”, x);
 else if (x < 13)
 printf(“x < 13.\n”);
 else
 printf(“x > 13.\n”);
 (2) if (x == 13)
 printf(“x == 13.\n”, x);
 else
 if (x < 13)
 printf(“x < 13.\n”);
 else
 printf(“x > 13.\n”);
 (1) and (2) are the same.

x == 13

x = ?

Print out
x > 13

false

true

x < 13

false

true

Print out
x==13

Print out
x < 13

 Any expression that evaluates to a nonzero value
is considered true.

 Examples:
 if (-3.5)
 printf("non-zero values are true\n"); // this will be printed.
 else
 printf("this never prints\n");
 if (0)
 printf("zero is false\n");
 else
 printf("this is always false\n"); // this will be printed.

 WARNING: “=” and “==”
◦ Example:

 if (a = 2)
 printf("a is equal to 2 forever.\n"); // this will be printed.
 else
 printf("This statement will never be executed.\n");

 && ---------- and

 Exp1 && exp2 is true only if both exp1 and
exp2 are true

 || ----------- or

 Exp1 || exp2 is true if either exp1 or exp2 is
true or if both are true

 ! -----------not

 ! Exp1 is true if exp1 is false, and it’s false if
exp1 is true

 Examples:
◦ 4<3 && 2<9

◦ 5!=5 || 4<19

◦ !(x<9)

 Operator precedence:
◦ relational operation have higher precedence over

logical operation, except the logical operation “!”

◦ parentheses have the highest precedence

 Example:
if (x < 10)

 if(y < 3)

 z = x + y;

your next statement comes here;

 the same as

if (x < 10 && y < 3)

 z = x + y;

your next statement comes here;

x < 10

x = ?

 next
statement

true

false

y < 3

true

false

z=x + y

 To test two condition expressions, you have to use a
logical operator to connect them.

 #include <stdio.h>
 int main(void)
 {
 int x;
 scanf("%d",&x);
 if(3<x<6) // wrong!!!, to correct (3<x && x<6)
 printf("if statement\n");
 else
 printf("else statment\n");
 return 0;
 }
 Test: input 7

 An if-else statement is used for binary decisions–those with two
choices, while switch statement is intended for more than two
choices.

 switch (expression)
 {
 case label1: do statements1// there is a space between case and label

 case label2: do statements2
 ·
 ·
 ·
 case labeln: do statementsn
 default: do defaulted statements (optional)
 }
 expression should be an integer value (including type char).
 Labels must be constants (integer constants or char constants).

 The program scans the list of labels until it
finds one matching that value. Then, the
program then jumps to the line.

 If there is no matching, while there is
“default” key word, the statements associated
with “default” will be executed.

 If there is no matching, and there is no
“default” either, the program will jump out of
switch statement. The statement after switch
statement will be executed.

 When you see “break”, the program will jump out of
the switch statement when reaching the break.

 Examples:
 Example (1)
◦ int x;
◦ scanf("%d", &x);
◦ switch(x)
◦ {
◦ case 1: printf("freshman\n");
◦ case 2: printf("sophomore\n");
◦ case 3: printf("junior\n");
◦ case 4: printf("senior\n");
◦ default: printf("graduates\n");
◦ }
◦ printf("out of switch now.\n");

 Example (2)
◦ int x;
◦ scanf("%d", &x);
◦ switch(x)
◦ {
◦ case 1: printf("freshman\n");
◦ break;
◦ case 2: printf("sophomore\n");
◦ case 3: printf("junior\n");
◦ break;
◦ case 4: printf("senior\n");
◦ default: printf("graduates\n");
◦ }
◦ printf("out of switch now.\n");

 Empty case:
◦ int x;
◦ scanf("%d", &x);
◦ switch(x)
◦ {
◦ case 1:
◦ case 2: printf("sophomore\n");
◦ case 3: printf("junior\n");
◦ break;
◦ case 4: printf("senior\n");
◦ default: printf("graduates\n");
◦ }
◦ printf("out of switch now.\n");
◦ //It seems as if two labels are associated with one

statement.

 Case with multiple statements:
◦ int x;
◦ scanf("%d", &x);
◦ switch(x)
◦ {
◦ case 1: printf("freshman\n");
◦ printf("redundant freshman\n");
◦ case 2: printf("sophomore\n");
◦ case 3: printf("junior\n");
◦ break;
◦ case 4: printf("senior\n");
◦ default: printf("graduates\n");
◦ }
◦ printf("out of switch now.\n");

 char type technically is an integer type

 Computer uses numeric codes to represent
characters, and store characters as integers

 The mostly commonly used code in the U.S. is
the ASCII code

 To read the table: Row number + column number

 A char variable takes 8-bit unit of memory (1
byte), which can be verified by sizeof()

 C character constant: a single letter contained
between single quotes

 Example:
◦ char mych = 'a';

◦ printf("%d", sizeof(char));

 char letter;
 letter = 'A';
 char letter = 'A';
 char letter = 65;
 printf("print the ASCII for \'A\' - %d", letter);// 65 will

be printed
 printf("print the char value for \'A\' - %c", letter); // A

will be printed
 scanf("%c", &letter);// must read a character, even the

input is a digit, it will be regarded as a character
 scanf("%d", &letter);// fail – type must match
 Not good programming to mix integer and char

value, because it needs remembering ASCII for
characters.

 To compare two char values, any relational
operator will work.

 Examples:
◦ char ch1, ch2;

◦ scanf("%c %c", &ch1, &ch2);

◦ if (ch1 < ch2)

◦ printf("%c is larger.\n", ch2);

◦ else

◦ printf("%c is larger.\n", ch1);

 Characters which can
not be printed directly

 Rather, some represent
some actions such as
backspacing or going
to the next line or
making the terminal
bell ring.

 char newline1 = '\n';

 char newline2 = 10;

 printf("The first line. %c", newline1);

 printf("The second line. \n");

 printf("The third line. %c", newline2);

