
Dr. Na Li
CSE @ UTA

Jan. 22, 2013

 if statement gives you choice of either executing a
statement or skipping it

 The basic format of the if statement is
 if (condition_is_true)
 do_something;
 // condition_is_true should be an expression

 //need the parenthesis for the expression
 // If expression evaluates to true (nonzero), do something. Otherwise, it is
skipped. Normally, expression is relational expression. But in general, any
expression will work since it has a value, which can be mapped to true or false.

 Examples
 int x;
 int y = 6;
 scanf (“%d”, &x);
 if (x >= 2)
 y = 10;
 printf(“y is %d.\n”, y);

x >= 2

x = 10

if statement

printf

true

false

 indent style - a convention governing the
indentation of blocks of code to convey the
program's structure

 Visual Studio manages indent automatically
by default

 Manually, “Tab” key on the keyboard will
help

 Handle more than one statements when the
condition is true

 Create a block of statements by using braces.
 Example

 if (x >= 2)

 {

 y = 10;

 printf("y is now %d", y);

 }

 next statement;

// with one statement, you can use “{}”, but it’s not
necessary.

// without the braces what’s going to happen here?

 To do one thing if a condition is true but another
if the condition is false - if-else statement:

 Basic format of if-else statement
if (expression_is_true)

 do_something (if statement);

else

 do_something_else (else statement);

 Example:
int x = 10;

if(x>=2)

 printf("x>=2\n");

else

 printf("x<2\n");

your next statement;

x >= 2

x = 10

if
statement

next
statement

true
else

statement

false

 else statement must have
an if statement to match

 Not allowed to have any
statement between if
statement and else
statement (except the cases
of nested if-else)

 Example: (a wrong
program!)

int x = 4;

int y;

if (x >= 2)

 y = 10;

 printf("y is now 10.\n");

 else

 printf("y is not assigned.\n");

 else statement can
also be a block of
statements, but
remember to give “{ }”

 Example:
else

{

 y = y + 2;

 printf("y is not

 assigned.\n");
}

 Have a second
conditional statement
in when the first
condition is true

 if statements can be
nested

 Example :
 if (x < 10)

 if(y < 3)

 z = x + y;

 your next statement
comes here;

 // To assign a value of
(x+y) to z only if x > 10 and
y < 3.

x < 10

x = 10

 next
statement

true

false

y < 3

true

false

Z=x+y

/* indentation is used to show correct logic; the else goes with the
nearest unmatched if statement within a block , where block is
defined by using braces.*/
 Examples: (nested in if statement)

(1) if (x == 13)
 if (y == 52)
 printf("Test1.\n");
 else
 printf("Test2.\n");
 printf("Test3.\n");
(2) if (x == 13)
 if (y== 52)
 printf("Test1.\n");
 else
 printf("Test2.\n");
 printf("Test3.\n");
 (3) if (x == 13)
 if (y== 52)
 printf("Test1.\n");
 else
 printf("Test2.\n");
 printf("Test3.\n");

(4) if (x == 13)

 {

 if (y == 52)

 printf("Test1.\n");

 else

 printf("Test2.\n");

 }

 printf("Test3.\n");

(5) if (x == 13)

 {

 if (y== 52)

 printf("Test1.\n");

 }

 else

 printf("Test2.\n");

 printf("Test3.\n");

 (1)(2)(3)(4) are the same, but not (5)
 (2) and (3) are not good program styles, you should use indent to convey

your code block, like what (1) does, or use the braces like the (4)
example.

 Examples: (nested in else statement)
 (1) if (x == 13)
 printf(“x == 13.\n”, x);
 else if (x < 13)
 printf(“x < 13.\n”);
 else
 printf(“x > 13.\n”);
 (2) if (x == 13)
 printf(“x == 13.\n”, x);
 else
 if (x < 13)
 printf(“x < 13.\n”);
 else
 printf(“x > 13.\n”);
 (1) and (2) are the same.

x == 13

x = ?

Print out
x > 13

false

true

x < 13

false

true

Print out
x==13

Print out
x < 13

 Any expression that evaluates to a nonzero value
is considered true.

 Examples:
 if (-3.5)
 printf("non-zero values are true\n"); // this will be printed.
 else
 printf("this never prints\n");
 if (0)
 printf("zero is false\n");
 else
 printf("this is always false\n"); // this will be printed.

 WARNING: “=” and “==”
◦ Example:

 if (a = 2)
 printf("a is equal to 2 forever.\n"); // this will be printed.
 else
 printf("This statement will never be executed.\n");

 && ---------- and

 Exp1 && exp2 is true only if both exp1 and
exp2 are true

 || ----------- or

 Exp1 || exp2 is true if either exp1 or exp2 is
true or if both are true

 ! -----------not

 ! Exp1 is true if exp1 is false, and it’s false if
exp1 is true

 Examples:
◦ 4<3 && 2<9

◦ 5!=5 || 4<19

◦ !(x<9)

 Operator precedence:
◦ relational operation have higher precedence over

logical operation, except the logical operation “!”

◦ parentheses have the highest precedence

 Example:
if (x < 10)

 if(y < 3)

 z = x + y;

your next statement comes here;

 the same as

if (x < 10 && y < 3)

 z = x + y;

your next statement comes here;

x < 10

x = ?

 next
statement

true

false

y < 3

true

false

z=x + y

 To test two condition expressions, you have to use a
logical operator to connect them.

 #include <stdio.h>
 int main(void)
 {
 int x;
 scanf("%d",&x);
 if(3<x<6) // wrong!!!, to correct (3<x && x<6)
 printf("if statement\n");
 else
 printf("else statment\n");
 return 0;
 }
 Test: input 7

 An if-else statement is used for binary decisions–those with two
choices, while switch statement is intended for more than two
choices.

 switch (expression)
 {
 case label1: do statements1// there is a space between case and label

 case label2: do statements2
 ·
 ·
 ·
 case labeln: do statementsn
 default: do defaulted statements (optional)
 }
 expression should be an integer value (including type char).
 Labels must be constants (integer constants or char constants).

 The program scans the list of labels until it
finds one matching that value. Then, the
program then jumps to the line.

 If there is no matching, while there is
“default” key word, the statements associated
with “default” will be executed.

 If there is no matching, and there is no
“default” either, the program will jump out of
switch statement. The statement after switch
statement will be executed.

 When you see “break”, the program will jump out of
the switch statement when reaching the break.

 Examples:
 Example (1)
◦ int x;
◦ scanf("%d", &x);
◦ switch(x)
◦ {
◦ case 1: printf("freshman\n");
◦ case 2: printf("sophomore\n");
◦ case 3: printf("junior\n");
◦ case 4: printf("senior\n");
◦ default: printf("graduates\n");
◦ }
◦ printf("out of switch now.\n");

 Example (2)
◦ int x;
◦ scanf("%d", &x);
◦ switch(x)
◦ {
◦ case 1: printf("freshman\n");
◦ break;
◦ case 2: printf("sophomore\n");
◦ case 3: printf("junior\n");
◦ break;
◦ case 4: printf("senior\n");
◦ default: printf("graduates\n");
◦ }
◦ printf("out of switch now.\n");

 Empty case:
◦ int x;
◦ scanf("%d", &x);
◦ switch(x)
◦ {
◦ case 1:
◦ case 2: printf("sophomore\n");
◦ case 3: printf("junior\n");
◦ break;
◦ case 4: printf("senior\n");
◦ default: printf("graduates\n");
◦ }
◦ printf("out of switch now.\n");
◦ //It seems as if two labels are associated with one

statement.

 Case with multiple statements:
◦ int x;
◦ scanf("%d", &x);
◦ switch(x)
◦ {
◦ case 1: printf("freshman\n");
◦ printf("redundant freshman\n");
◦ case 2: printf("sophomore\n");
◦ case 3: printf("junior\n");
◦ break;
◦ case 4: printf("senior\n");
◦ default: printf("graduates\n");
◦ }
◦ printf("out of switch now.\n");

 char type technically is an integer type

 Computer uses numeric codes to represent
characters, and store characters as integers

 The mostly commonly used code in the U.S. is
the ASCII code

 To read the table: Row number + column number

 A char variable takes 8-bit unit of memory (1
byte), which can be verified by sizeof()

 C character constant: a single letter contained
between single quotes

 Example:
◦ char mych = 'a';

◦ printf("%d", sizeof(char));

 char letter;
 letter = 'A';
 char letter = 'A';
 char letter = 65;
 printf("print the ASCII for \'A\' - %d", letter);// 65 will

be printed
 printf("print the char value for \'A\' - %c", letter); // A

will be printed
 scanf("%c", &letter);// must read a character, even the

input is a digit, it will be regarded as a character
 scanf("%d", &letter);// fail – type must match
 Not good programming to mix integer and char

value, because it needs remembering ASCII for
characters.

 To compare two char values, any relational
operator will work.

 Examples:
◦ char ch1, ch2;

◦ scanf("%c %c", &ch1, &ch2);

◦ if (ch1 < ch2)

◦ printf("%c is larger.\n", ch2);

◦ else

◦ printf("%c is larger.\n", ch1);

 Characters which can
not be printed directly

 Rather, some represent
some actions such as
backspacing or going
to the next line or
making the terminal
bell ring.

 char newline1 = '\n';

 char newline2 = 10;

 printf("The first line. %c", newline1);

 printf("The second line. \n");

 printf("The third line. %c", newline2);

