
1

On Skyline Groups
Nan Zhang Member, IEEE , Chengkai Li Member, IEEE , Naeemul Hassan, Sundaresan Rajasekaran,

Gautam Das Member, IEEE

Abstract —We formulate and investigate the novel problem of finding the skyline k-tuple groups from an n-tuple dataset—i.e., groups of
k tuples which are not dominated by any other group of equal size, based on aggregate-based group dominance relationship. The major
technical challenge is to identify effective anti-monotonic properties for pruning the search space of skyline groups. To this end, we first
show that the anti-monotonic property in the well-known Apriori algorithm does not hold for skyline group pruning. Then, we identify two
anti-monotonic properties with varying degrees of applicability: order-specific property which applies to SUM, MIN, and MAX as well
as weak candidate-generation property which applies to MIN and MAX only. Experimental results on both real and synthetic datasets
verify that the proposed algorithms achieve orders of magnitude performance gain over the baseline method.

Index Terms —Skyline Queries, Skyline Groups, Anti-Monotonic Properties

✦

1 INTRODUCTION

The traditionalskyline tupleproblem has been extensively
investigated in recent years [5], [10], [12], [26], [14], [21],
[8]. Consider a database table ofn tuples andm numeric
attributes. The domain of each attribute has an application-
specific preference order, with “better” values being preferred
over “worse” values. A tuplet1 dominatest2 if and only if
every attribute value oft1 is either better than or equal to the
corresponding value oft2 according to the preference order
and t1 has better value on at least one attribute. The set of
skyline tuples are those tuples that are not dominated by any
other tuples in the table.

In this paper, we formulate and investigate the novel prob-
lem of computingskyline groups. In contrast to the skyline
tuple problem which has been extensively investigated, the
skyline group problem surprisingly has not been studied in
prior work. In this problem, we refer to any subset ofk tuples
in the table as ak-tuple group. Our objective is to find, for
a givenk, all k-tuple skyline groups, i.e.,k-tuple groups that
are notdominatedby any otherk-tuple groups.

The notion of dominance between groups is analogous to
the dominance relation between tuples in skyline analysis.
The dominance relation between two groups ofk tuples is
defined by comparing their aggregates. To be more specific,
we calculate for each group a single aggregate tuple, whose
attribute values are aggregated over the corresponding attribute
values of the tuples in the group. The groups are then
compared by their aggregate tuples using traditional tuple
dominance. While many aggregate functions can be considered
in calculating aggregate tuples, we focus on three distinctfunc-
tions that are commonly used in database applications—SUM

• N. Zhang and S. Rajasekaran are with the Department of Computer
Science, George Washington University.
E-mail: nzhang10@gwu.edu, sundarcs@gwmail.gwu.edu

• C. Li, N. Hassan, G. Das are with the Department of Computer Science and
Engineering, The University of Texas at Arlington, Arlington, TX 76019.
G. Das is also with Qatar Computing Research Institute.
E-mail: cli@uta.edu, naeemul.hassan@mavs.uta.edu, gdas@uta.edu

(i.e, AVG, since groups are of equal size), MIN and MAX.
Intuitively, SUM captures the collective strength of a group,
while MIN/MAX compares groups by their weakest/strongest
member on each attribute. Note that throughout the paper, we
assume the larger the SUM/MIN/MAX values are, the better a
group is. As an simple example, consider two3-tuple groups—
G={〈0, 3〉,〈2, 1〉,〈2, 2〉} and G′={〈2, 1〉,〈2, 2〉,〈0, 2〉}. Their
aggregate tuples under the function SUM are SUM(G)=〈4, 6〉
and SUM(G′)=〈4, 5〉. HenceG dominatesG′.

Many real-world applications require to choose groups of
objects. In the booming multi-billion dollar industry of online
fantasy sports, gamers compete by forming and managing team
rosters of real-world athletes who may or may not be in the
same real-world team, aiming at outperforming other gamers’
teams. They select teams, which are of equal size, based on
prediction of player performance. The teams are compared
by aggregated performance of the athletes in real games. For
example, consider a table of the pool of available NBA players
in a basketball fantasy game. Each player is represented as
a tuple consisting of several statistical categories: points per
game, rebounds per game, assists per game, etc. The strength
of a team is thus captured by the corresponding aggregates
of these statistics. Other motivating examples include the
applications where the need for choosing groups arises, such
as expert finding and crowdsourcing. Consider the task of
choosing a panel of a certain number of experts to evaluate
a research paper or a grant proposal. An expert can be
modeled as a tuple in the multi- dimensional space defined
by the paper’s topics, to reflect the expert’s strength on these
topics. The collective expertise of a panel is modeled as the
aggregate of the corresponding tuples. The goal is to select
panels attaining strong aggregates. Similarly the problemof
forming collaborative teams for software development projects
can be viewed as finding groups of programmers whose
corresponding tuples are strong in the multi-dimensional space
of desired skills for the project. This can be extended to the
more general context of crowdsourcing tasks to users.

The capability of recommending groups is valuable in
the above-mentioned applications. An attractive propertyof

2

skyline groups is that a skyline group cannot be dominated by
any other group. In contrast, given a non-skyline group, there
always exists a better group in the skyline. Hence the skyline
groups present those groups that are worth recommending.
They become the input to further process that ultimately
recommends one group.

Recommending a few groups becomes non-trivial when
there are many skyline groups. In addition to eyeballing
skyline groups by browsing and visualization interface, such
post-processing can also be automatic. One approach is to
filter and rank skyline groups according to user preference.
For instance, if groups are ranked by amonotonicscoring
function on attributesA1, . . . , Am, regardless of the specific
scoring function, the skyline always contains a group attaining
the best score. Another automatic approach is to return a
small number of representative skyline groups, by criteria
proposed for skyline tuples [7], [18], [27], [6], since each
group corresponds to an aggregate tuple. We do not further
investigate such post-processing in this paper. In Section2,
we provide a more detailed discussion of previous work on
choosing from a large number skyline tuples.

To find k-tuple skyline groups in a table ofn tuples, there
can be

(

n

k

)

different candidate groups.How do we compute
the skyline groups ofk tuples each from all possible groups?
Interestingly, the skyline group problem is significantly differ-
ent from the traditional skyline tuple problem, to the extent
that algorithms for the later are quite inapplicable.

A simple solution is to first list all
(

n

k

)

groups, compute the
aggregate tuple for each group, and then use any traditional
skyline tuple algorithm to identify the skyline groups. The
main problem with such an approach is the significant compu-
tational and storage overhead in creating this huge intermediate
input for the traditional skyline tuple algorithm (i.e.,O(

(

n

k

)

)
aggregate tuples). The skyline group problem also has another
idiosyncrasy that is not shared by the skyline tuple problem.
For certain aggregate functions, specifically MAX and MIN,
even the output size—i.e., the number of skyline groups—
while significantly smaller that

(

n

k

)

, may be nevertheless too
large to explicitly compute. To address these two problems,we
develop novel techniques, namelyoutput compression, input
pruning, andsearch space pruning.

For MAX and MIN aggregates, we observe that numerous
groups may share the same aggregate tuple. Our approach to
compressing the output is to list the distinct aggregate tuples,
each representing possibly many skyline groups, and also
provide enough additional information so that actual skyline
groups can be reconstructed if required. Interestingly, there is
a difference between MIN and MAX in this regard: while the
compression for MIN is relatively efficient, the compression
for MAX requires solving the NP-Hard Set Cover Problem
(which fortunately is not a real issue in practice, as we shall
show in the paper). Note that both output compression and the
aforementioned post-processing are for tackling large output.
Output compression is incorporated into the process of finding
skyline groups and is performed before post-processing.

Our approach to input pruning is to filter input tuples and
significantly reduce the input size to the search of skyline
groups. The idea is that if a tuplet is dominated byk or more

tuples, then we can safely excludet from the input without
influencing the distinct aggregate tuples found at the end. We
also find that, for MAX, we can safely exclude any non-skyline
tuple without influencing the results.

Our final ideas (perhaps, technically the most sophisticated
of the paper) are on search space pruning. Instead of enumerat-
ing everyk-tuple combination, we exclude from consideration
many combinations. To enable such candidate pruning, we
identify two properties inspired by the anti-monotonic property
in the well-known Apriori algorithm for frequent itemset
mining [1]. It is important to emphasize here that the anti-
monotonic property in Aprioridoes not holdfor skyline groups
defined by SUM, MIN or MAX. More specifically, a subset
of a skyline group may not necessarily be a skyline group
itself. We identify two anti-monotonic properties with dif-
ferent applicability—while theOrder-Specific Anti-Monotonic
Property (OSM) applies to SUM, MIN and MAX, theWeak
Candidate-Generation Property(WCM) applies to MIN and
MAX but not SUM. We develop a dynamic programming
algorithm and an iterative algorithm to compute skyline group-
s, based on OSM and WCM, respectively. Our algorithms
iteratively generate larger candidate groups from smallerones
and prune candidate groups by these properties.

We briefly summarize our contributions as follows.

• We motivate and formulate the novel problem of com-
puting skyline groups, and discuss the inapplicability of
traditional skyline tuple algorithms in solving this problem.

• We develop novel algorithmic techniques for output com-
pression, input pruning, and search space pruning. In partic-
ular, for search space pruning, we identify interesting anti-
monotonic properties to filter out candidate groups.

• We run comprehensive experiments on real and synthetic
datasets to evaluate the proposed algorithms.

2 RELATED WORK

Skyline query has been intensively studied over the last
decade. Kung et al. [13] first proposed in-memory algorithms
to tackle the skyline problem. Börzsönyi et al. [5] was the
original work that studied how to process skyline queries in
database systems. Since then, this line of research includes
proposals of improved algorithms [10], [12], progressive sky-
line computation [26], [14], [21], query optimization [8],and
the investigation of many variants of skyline queries [23],[30],
[17], [22], [19], [11], [16], [24], [9], [29], [4].

With regard to the concept of skyline groups, the most
related previous works are [3] and [31]. In [3] the groups
are defined by GROUP BY in SQL, while the groups in our
work are formed by combinations ofk tuples in a tuple set.
Zhang et al. [31] studied set preferences where the preference
relationships betweenk-subsets of tuples are based on features
of k-subsets. The features are more general than numeric
aggregate functions considered in our work. The preferences
given on each individual feature form a partial order over
the k-subsets instead of a total order by numeric values.
Their general framework can model many different queries,
including our skyline group problem. The optimization tech-
niques for that framework, namely thesuperpreferenceand

3

M-relation ideas, when instantiated for our specific problem,
are essentially equivalent to input pruning in our solutionas
well as merging identical tuples. Hence such an instantiation
is a baseline solution to our problem. However, the important
search space pruning properties (OSM and WCM) and output
compression in Section 4 are specific to our problem and were
not studied before. These ideas bring substantial performance
improvement, as the comparison with the baseline in Section6
shall demonstrate.

With regard to the problem of forming expert teams to solve
tasks, the most related prior works are [15] and [2]. In [2]
teams are ranked by a scoring function, while in our case
groups are compared by skyline-based dominance relation.
Hence the techniques proposed in [2] are not applicable to our
setting. In [15], instead of measuring how well teams match
tasks, the focus was on measuring if the members in a team can
effectively collaborate with each other, based on information
from social networks.

A large number of skyline points may exist in a given
dataset, due to various reasons such as high dimensionality.
Such large size of skyline hinders the usefulness of skyline
to end users. Researchers have noticed this issue and vari-
ous approaches are proposed to alleviate the problem. One
direction is to perform skyline analysis in subspaces instead
of the original full space [23], [28]. Another direction is to
choose a small number of representative skyline points. The
semantics and methods proposed in various works on this
line can be directly adopted for post-processing when there
are many skyline groups, since each group corresponds to an
aggregate tuple. Specifically, Chan et al. [7] propose to return
only frequent points and they measure the frequency of a point
by how often it is in the skyline of different subspaces. Lin et
al. [18] selectk most representative points such that the total
number of data points dominated by thek points is maximized.
Tao et al. [27] define representative skyline points differently,
aiming at minimizing the maximal distance between non-
representative skyline points and their closest representatives.
Chan et al. [6] definek-dominant skyline as the points that are
not dominated by any other points in anyk-attribute subspace.

3 SKYLINE GROUP PROBLEM

In this section we formulate the skyline group problem. Table 1
lists the major notations used in the paper. Consider a database
tableD of n tuplest1, . . . , tn andm attributesA1, . . . , Am.
We refer to any subset ofk tuples in the table, i.e.,G :
{ti1, . . . , tik} ⊆ D, as ak-tuple group. Our objective is to find
the skyline ofk-tuple groups. Whether ak-tuple group belongs
to the skyline or not is determined by the dominance relation
between this group and otherk-tuple groups. The dominance
test, when taking two groupsG1 andG2 as input, produces one
of three possible outputs—G1 dominatesG2, G2 dominates
G1, or neither dominates the other. Ak-tuple group is askyline
k-tuple group, or skyline groupin short, if and only if it is not
dominated by any otherk-tuple group inD. Note that a tuple
ti may be in multiple skyline groups.

Groups are compared by their aggregates. Each group is
associated with anaggregate vector, i.e., anm-dimensional

t a tuple withm attributes{A1, . . . , Am}
D a database table ofn tuples{t1, . . . , tn}
G {ti1, . . . , tik} ⊆ D, a k-tuple group

G ≻ G′ G dominatesG′

v an aggregate vector
F(G) aggregate vector of groupG under functionF
Tn the firstn tuples

Skyn

k all k-tuple skyline groups inTn

Skyk all k-tuple skyline groups inD
OSM order-specific property
WCM weak candidate-generation property

TABLE 1: Notations

vector with thei-th element being an aggregate value ofAi

over all k tuples in the group. While this definition allows
general aggregate functions, we focus on three commonly used
functions—SUM (i.e, AVG, since groups are of equal size),
MIN, and MAX. Functions such as MEDIAN and VARIANCE
do not satisfy the properties in Section 4 and thus do not
lend themselves to efficient algorithms proposed in the paper.
The aggregate vectors for two groups are compared according
to the traditional tuple dominance relation which is defined
according to certain application-specific preferences. Such
preferences are captured as a combination of total orders for all
attributes, where each total order is defined over (all possible
values of) an attribute, with “larger” values preferred over
“smaller” values. Hence, an aggregate vectorv1 dominatesv2
if and only if every attribute value ofv1 is larger than or equal
to the corresponding value ofv2 according to the preference
order andv1 is larger thanv2 on at least one attribute.

A1 A2

t1 3 0
t2 0 3
t3 2 1
t4 2 2
t5 0 2

TABLE 2: Running
example

t2

t5 t4

t3

t1

tuple

MAX skyline
aggr vector

MIN skyline
aggr vector

Fig. 1: Running example in 2-d space

Tuples SUM MAX MIN
G t2〈0, 3〉 t3〈2, 1〉 t4〈2, 2〉 〈4, 6〉 〈2, 3〉 〈0, 1〉
G′ t3〈2, 1〉 t4〈2, 2〉 t5〈0, 2〉 〈4, 5〉 〈2, 2〉 〈0, 1〉

Dominance Relation G ≻ G′ G ≻ G′ G = G′

TABLE 3: Examples of aggregate-based comparison

Table 2 depicts a 5-tuple, 2-attribute table which we shall
use as a running example. Figure 1 depicts the tuples on a 2-
dimensional plane defined by the two attributes. We consider
the natural order of real numbers as the preference order. For
instance,t2 dominatest5 while neithert2 nor t3 dominates
each other. Table 3 shows a sample case of comparing two
3-tuple groups for each aggregate function. Figure 1 also
shows the symbols corresponding to MIN and MAX aggregate
vectors of skyline 2-tuple groups in the running example. For
instance, the skyline 2-tuple group under MAX function is
{t1, t2}, with aggregate vector〈3, 3〉. The aggregate vectors

4

of skyline 2-tuple groups under MIN are〈2, 1〉 (for group
{t3, t4}) and 〈0, 2〉 (for groups{t2, t4}, {t2, t5}, {t4, t5}).

Our methods allow a mixture of different aggregate func-
tions on different attributes. For example, if we use SUM on
the first attribute and MAX on the second attribute, then for
the two groups in Table 3, the aggregated vectors forG andG′

are〈4, 3〉 and 〈4, 2〉, respectively. Our order-specific property
(Section 4.3.1) can handle arbitrary mixture of SUM, MIN,
and MAX, while the weak candidate-generation property (Sec-
tion 4.3.2) handles any mixture of MIN and MAX. Section 6
presents the experimental results on such mixed functions.

4 FINDING SKYLINE GROUPS

In this section, we develop our main ideas for finding skyline
groups. We start by considering a brute-force approach which
first enumerates each possible combination ofk tuples in
the input table, computes the aggregate vector for each com-
bination, and then invokes a traditional skyline-tuple-search
algorithm to find all skyline groups. This approach has two
main problems. One is its significant computational overhead,
as the input size to the final step, i.e., skyline tuple search, is
(

n

k

)

, which can be extremely large.
The other problem is on the seemingly natural strategy of

listing all skyline groups as the output. For certain aggregate
functions (e.g., MAX and MIN), even the output size, i.e.,
the number of skyline groups produced, may be nevertheless
too large to explicitly compute and store. Consider an extreme
example under MAX. If a tuplet dominates all other tuples,
then everyk-tuple combination that containst is a MAX
skyline group—leading to a total ofO(nk−1) skyline groups.
Such a large output size not only leads to significant overhead
in computing skyline groups, but also makes post-processing
(e.g., ranking and browsing of skyline groups) costly.

Another idea is to consider skyline tuples only. While seem-
ingly intuitive, this idea will not work correctly in general. In
particular, we have the following two observations:

1) A group solely consisting of skyline tuples maynot be
a skyline group. ConsiderG={t1, t2} in the running example.
Note that botht1 andt2 are skyline tuples. Nonetheless, under
SUM, G is dominated byG′={t3, t4}, as SUM(G)=〈3, 3〉
while SUM(G′)=〈4, 3〉. As such,G is not on the skyline.

2) A group containing non-skyline tuples could be a skyline
group. Again consider the running example, this time with
G = {t4, t5} and MIN function. Note thatt5 is not on the
skyline as it is dominated byt2 andt4. Nonetheless,G (with
MIN(G) = 〈0, 2〉) is actually on the skyline, because the only
other groups which can reachA2 ≥ 2 in the aggregate vector
are {t2, t4} and {t2, t5}, both of which yield an aggregate
vector of 〈0, 2〉, the same as MIN(G). Thus, G is on the
skyline despite containing a non-skyline tuple.

To address these challenges, we develop several techniques,
namelyoutput compression, input pruning, andsearch space
pruning. We start with developing anoutput compression
technique that significantly reduces the output size when the
number of skyline groups is large, thereby enabling more effi-
cient downstream processes that consume the skyline groups.
Then, we consider how to efficiently find skyline groups. In

particular, we shall describe two main ideas. One isinput
pruning—filtering the input tuples to significantly reduce the
input size to the search of skyline groups. The other issearch
space pruning—instead of enumerating each and everyk-tuple
combination, we develop techniques to quickly exclude from
consideration a large number of combinations. Note that the
two types of pruning techniques are transparent to each other
and therefore can be readily integrated.

4.1 Output Compression for MIN and MAX

Main Idea: A key observation driving our design of output
compression is that while the number of skyline groups may
be large, many of them share the same aggregate vector. Thus,
our main idea for compressing skyline groups is to store not
all skyline groups, but only the (much fewer) distinct skyline
aggregate vectors (in shortskyline vector) as well as one
skyline group for each skyline vector.

Among the three aggregate functions we consider in the
paper, SUM rarely, if ever, requires output compression. The
intuitive reason is that, for any attribute, the SUM aggregate
of a skyline group is sensitive to all tuples in the group,
while MIN (resp. MAX) aggregate is in general only sensitive
to tuples with minimum (resp. maximum) values on certain
attributes, making it much more likely for two groups to share
the same MIN (resp. MAX) vector. In the rest of the paper,
we shall focus on finding all skylinek-tuple groups for SUM,
and finding all distinct skyline vectors and their accompanying
(sample) skyline groups for MIN and MAX. We use the term
“skyline search” to refer to the process in solving the problem.

Reconstructing all Skyline Groups for a Skyline Vector:
While the distinct skyline vectors and their accompanying
(sample) skyline groups may suffice in many cases, a user
may be willing to spend time on investigating all groups
equivalent to a particular skyline vector, and to choose a
group after factoring in her knowledge and preference. Thus,
we now discuss how one can reconstruct the skyline groups
corresponding to a given skyline vector, if required.

Consider MIN first. For a given MIN skyline vectorv, the
process is as simple as findingΩ(v), the set of all input tuples
which dominate or are equal tov. The reason is as follows.
Given anyk-tuple subset ofΩ(v), its aggregate vectorv′ must
be equal tov, because (1)v′ cannot dominatev (otherwisev is
not a skyline vector) and (2)v′ does not contain smaller value
than v on any attribute, by definition ofΩ(v). On the other
hand, if a group contains a tuple outside ofΩ(v), its aggregate
vector must have smaller values thanv on some attributes, and
therefore cannot be in the skyline. The time complexity of a
linear scan in findingΩ(v) is O(n). Given Ω(v), the only
additional step is to enumerate allk-tuple subsets ofΩ(v).

For MAX, interestingly, the problem is much harder. To
understand why, consider each tuple as a set consisting of
all attributes for which the tuple reaches the same value as
a MAX skyline vector. The problem is now transformed to
finding all combination ofk tuples such that the union of their
corresponding sets is the universal set of all attributes—i.e.,
finding all set covers of sizek. For instance, in finding the2-
tuple skyline groups for a skyline vectorv=〈4, 5, 6〉, consider
two tuplest1=〈3, 5, 2〉 andt2=〈4, 1, 6〉. The set fort1 is {A2},

5

becauset1 has the same value asv on attributeA2. Similarly
the set fort2 is {A1, A3}. Since the union of the two sets is
{A1, A2, A3}, the two tuples together is a set cover of size
2. The NP-hardness of this problem directly follows from the
NP-completeness of SET-COVER, seemingly indicating that
MAX skyline groups should not be compressed.

Fortunately, despite of the theoretical intractability, finding
all skyline groups matching a MAX skyline vectorv is usually
efficient in practice. This is mainly because the number of
tuples that “hit” the MAX attribute values inv is typically
small. As such, even a brute-force enumeration can be effi-
cient, as demonstrated by experimental results in Section 6.
Nonetheless, when a large number of tuples “hit” the MAX
attribute values, it is unclear how one can efficiently find
and store all skyline groups - e.g., by using certain efficient
indexing schemes. We leave the design of such indexing
schemes as an open problem for future research.

Before algorithmic discussions, we make an important ob-
servation for the case of MAX whenk ≥ m, where k is
the size of a skyline group andm is the number of attributes.
Since it takes at mostm tuples to cover the MAX values of all
attributes, there is only one distinct skyline vector—the vector
that takes the MAX value on every attribute. In reconstructing
skyline groups, for each skyline group, after finding tuplesthat
cover the MAX values, the remaining tuples can be arbitrary.

4.2 Input Pruning

We now consider the pruning of input to skyline group
searches, which is originally the set of alln tuples. An
important observation is that if a tuplet is dominated byk or
more tuples in the original table, then we can safely excludet
from the input without influencing the distinct skyline vectors
found at the end. To understand why, suppose that a skyline
groupG contains a tuplet that is dominated byh (h≥k) tuples.
There is always an input tuplet′ that dominatest and is not in
G. Sincet′ dominatest, there must be less thanh tuples that
dominatet′. Note that if t′ is still dominated byk or more
tuples, we can repeat this process until findingt′ 6∈G that is
dominated by less thank tuples. Now consider the construction
of another groupG′ by replacingt in G with t′. For SUM,
G′ always dominatesG, contradicting our assumption thatG
is a skyline group. Thus, no skyline group under SUM can
contain any tuple dominated byk or more tuples.

For MIN and MAX, it is possible that the aggregate vectors
of the aboveG′ and G are exactly the same. Even in this
case, we can still safely excludet from the input without
influencing the distinct skyline vectors. If other tuples inG are
dominated byk or more tuples, we can use the same process
to remove them and finally reach a group that (1) features the
same aggregate vector asG, and (2) has no tuple dominated
by k or more other tuples. Thus, we can safely remove all
tuples with at leastk dominators for SUM, MIN and MAX.

Another observation for input pruning is that, for MAX
only, we can safely exclude any non-skyline tuplet from the
input without influencing the skyline vectors. The reason is
as follows. Suppose a skyline groupG contains a non-skyline
tuple t that is dominated by a skyline tuplet′. If t′ 6∈G, then
we can replacet in G with t′ to achieve the same (skyline)

aggregate vector (becauseG is a skyline group). Ift′∈G, we
can removet from G without changing the aggregate vector
of G. In either way,t can be safely excluded from the input.
By repeatedly replacing or removing non-skyline tuples in the
above way, we will obtain a group of size at mostk that
is formed solely by skyline tuples.1 Padding the group with
arbitrary additional tuples to reach sizek will result in a group
of the same aggregate vector asG.

4.3 Search Space Pruning: Anti-Monotonicity

Our principal idea for search space pruning is to find and
leverage twoanti-monotonic propertiesfor skyline search,
somewhat in analogy to the Apriori algorithm for frequent
itemset mining [1]. Nonetheless, it is important to note that
the original anti-monotonic property in Apriori—every subset
of a group “of interest” (e.g., a group of frequent items) must
also be “of interest” itself—does not hold for skyline search
over SUM, MIN or MAX. In fact, two examples in Section 3
can serve as proof by contradiction, for SUM and MIN.
Specifically, for SUM, skyline2-tuple group{t3, t4} contains
a non-skyline tuplet3, i.e., a non-skyline1-tuple group. For
MIN, skyline group{t4, t5} contains a non-skyline tuplet5.
For MAX, the inapplicability can be easily observed from
the fact that the set of all tuples is always a skylinen-tuple
group, while many subsets of it are not on their corresponding
skylines of equal group size. Thus, the key challenge is to
find anti-monotonic properties that hold for skyline search.
We stress that the main contribution here is not aboutproving
these properties, but rather aboutfinding the right ones that
can effectively prune the search space.

4.3.1 Order-Specific Anti-Monotonic Property

Our first idea is to make a revision to the classic property in
the Apriori algorithm, by factoring in an order of all tuples. To
understand how, consider aggregate function SUM and a sky-
line k-tuple groupGk which violates the Apriori property, i.e.,
a (k−1)-tuple subset of it,Gk−1⊂Gk, is not a skyline (k−1)-
tuple group. We note for this case that all (k−1)-tuple groups
which dominateGk−1 must contain tupletk=Gk\Gk−1. To
understand why, suppose that there exists a (k−1)-tuple group
G′ which dominatesGk−1 but does not containtk. Then,
G′ ∪ {tk} would always dominateGk=Gk−1 ∪ {tk} under
SUM, contradicting the skyline assumption forGk. One can
see from this example that while a subset of a skyline group
may not be on the skyline for the entire input table, it is
always a skyline group over a subset of the input table—in
particular,D\{tk} in the above example. This observation can
be extended to MIN and MAX, with a small tweak. That is,
althoughGk−1 might be dominated by a (k−1)-tuple groupG′

not containingtk, the aggregate vectors ofG′ ∪ {tk} andGk

must be equal. Therefore, consideringG′ and ignoringGk−1

will still lead us to the same skyline vector. If we require
every subsetGk−1 of a skyline groupGk to be a skyline

1. Note that if the resulting group has size smaller thank, then it (and thus
G) reaches the maximum values on all attributes. If there are fewer thank
skyline tuples in the input, then we can immediately conclude that any skyline
k-tuple group must reach the maximum values on all attributes.

6

group over tableD\{tk}, wheretk=Gk\Gk−1, we will not
miss any skyline vector. This leads to the following property:

Definition 1 Order-Specific Property An aggregate function
F satisfies theorder-specific anti-monotonic propertyif ∀k,
given a skylinek-tuple groupGk with aggregate vectorv (i.e.,
v = F(Gk)), for each tuplet in Gk, there must exist a set of
(k− 1)-tuplesGk−1 ⊆ D with t 6∈ Gk−1, such that (1)Gk−1

is a skyline(k − 1)-tuple group over an input tableD\{t},
and (2)Gk−1∪{t} is a skylinek-tuple group over the original
input tableD which satisfiesF(Gk−1 ∪ {t}) = v.

It may be puzzling from the definition where the order
comes from. We note that it actually lies in the way search-
space pruning can be done according to this property. Consider
an arbitrary order of all tuples, say,〈t1, . . . , tn〉. For any
r < n, if we know that anh-tuple groupGh (h ≤ r) is not
a skyline group over{t1, . . . , tr}, then we can safely prune
from the search space allk-tuple groups whose intersection
with {t1, . . . , tr} is Gh—a reduction of the search space size
by O((n−r)k−h). The reason is that, if the aggregate function
satisfies the property in Definition 1, either (1) such groupsare
not skylinek-tuple groups or (2) the aggregate vectors of such
groups are unchanged if we replaceGh by h-tuple groups that
are subsets of{t1, . . . , tr} and dominateGh. Such a pruning
technique considers all tuples in a specific order—hence the
name of order-specific anti-monotonic property.

Theorem 1 SUM, MIN and MAX satisfy the order-specific
anti-monotonic property.

Proof: SupposeGk is a k-tuple skyline group with
aggregate vectorv (i.e., v = F(Gk)) and t ∈ Gk. Consider
Gk−1 = Gk\{t}. (A) If Gk−1 is a skyline (k−1)-tuple group
over D\{t}, thenGk−1 itself satisfies the two conditions in
Definition 1; (B) Otherwise, by definition of skyline group,
there must exist a skyline (k − 1)-tuple group overD\{t},
G′, such thatG′ ≻ Gk−1. For SUM, only the above (A) is
possible, i.e.,Gk−1 must be a skyline (k−1)-tuple group over
D\{t}. If (B) is possible, thenG′∪{t} ≻ Gk−1∪{t} = Gk by
the concept of SUM, which contradicts with the assumption
thatGk is ak-tuple skyline group. For MIN and MAX, for the
above case (B), we prove thatF(G′ ∪ {t})=F(Gk), i.e., G′

satisfies both condition (1) and (2) in Definition 1. According
to the semantics of MIN (MAX), ifG′ ≻ Gk−1, then either
G′∪{t} ≻ Gk−1 ∪{t} = Gk or G′∪{t} = Gk−1∪{t} = Gk.
G′ ∪ {t} ≻ Gk would contradict with the assumption thatGk

is a skyline group. ThereforeG′ ∪ {t} = Gk−1 ∪ {t} = Gk

and thusF(G′ ∪ {t})=F(Gk).
We note a limitation of the order-specific property. To prune

based on it, one has to compute for everyh∈[k, n − k] the
aggregate vectors of skyline 1, 2,. . ., min(k, h)-tuple groups
over the firsth tuples (by the order), because any of these
groups may grow into a skylinek-tuple group when latter
tuples (again, by the order) are brought into consideration.
Given a largen, the order-specific pruning process may incur
a significant overhead, as we shall show in Section 6.

4.3.2 Weak Candidate-Generation Property

We now describe an order-free anti-monotonic property which
“loosens” the classic Apriori property to one that holds for

skyline search. The main idea is that, instead of requiringevery
(k− 1)-tuple subset of a skylinek-tuple group to be a skyline
(k−1)-tuple group, we consider the following property which
only requiresat least onesubset to be on the skyline.

Definition 2 (Weak Candidate-Generation Property) An
aggregate functionF satisfies theweak candidate-generation
property if, ∀k and for any aggregate vectorvk of a skyline
k-tuple group, there must exist an aggregate vectorvk−1 for
a skyline(k − 1)-tuple group, such that for any(k− 1)-tuple
group Gk−1 which reachesvk−1 (i.e., F(Gk−1) = vk−1),
there must exist an input tuplet 6∈ Gk−1 which makes
Gk−1 ∪ {t} a skyline k-tuple group that reachesvk (i.e.,
F(Gk−1 ∪ {t}) = vk).

An intuitive way to understand the definition is to consider
the case where every skyline group has a distinct aggregate
vector. In this case, the weak anti-monotonic property holds
when every skylinek-tuple group has at least one (k−1)-
tuple subset being a skyline (k−1)-tuple group. The property
is clearly “weaker” than the classic (Apriori) anti-monotonic
property when being used for pruning, in the sense that it
allows more candidate sets to be generated than directly (and
mistakenly) applying the classic property.

In general, this property avoids the pitfall of order-specific
property by removing the requirement of enumerating all
tuples in order and generating skyline groups for each subset
of tuples along the way. However, its limitation is that it only
holds for MIN and MAX, but not for SUM.

Theorem 2 MIN and MAX satisfy the weak candidate-
generation property.

Proof: We prove the theorem for MAX. The proof for
MIN is similar. SupposeGk is a skyline k-tuple group
with F(Gk)=vk. Consider an arbitrary tuplet1∈Gk and the
corresponding (k−1)-tuple subset ofGk, G=Gk\{t1}.

If G is a skyline (k−1)-tuple group inD, then for any
G′ (includingG itself) such thatF(G′)=F(G), there are two
possible cases to consider: (A)t1 6∈ G′ and (B)t1∈G′. In Case
(A), F(G′ ∪ {t1})=F(G ∪ {t1})=F(Gk). In Case (B), note
that sinceG′ andG are of equal size, there must exist at least
one tuplet2 ∈ G and t2 /∈ G′. ConsiderG′ ∪ {t2}. Since
t2∈G andF(G′)=F(G), we have thatF(G′ ∪ {t2})=F(G ∪
{t2})=F(G). Furthermore, sincet1∈G′, under MAX,F(G′∪
{t2})=F(G∪{t1})=F(Gk). If G is not a skyline (k−1)-tuple
group in D, consider a skyline (k−1)-groupG′′ ≻ G. The
same analysis above applies toG′ instead ofG.

In all cases, we always find a skyline (k−1)-tuple group
and an extra tuple such that the aggregate vector of their union
equals the originalvk under MAX. Therefore MAX satisfies
the weak candidate-generation property in Definition 2.

Theorem 3 SUM does not satisfy the weak candidate-
generation property.

We would like to note that while the only proof needed
here is one counter-example, our study showed that finding
such a counter-example is non-trivial. In particular, the weak
candidate-generation property indeed holds whenk≤3, but
fails whenk≥4. For k=4, we constructed through MATLAB
an 8-tuple, 69-attribute table as a counter-example, as shown in

7

t1: 〈 -131,-40,-4,-4,-98,-20,4,4,-69,-49,-9,-49,-9,54,-59,16,20,20,-107,-22,27,-22,27,61,-39,13,17,13,17,68,-12,-12,89,59,82,35,29,29,46,51,40,51,40,55,27,
56,20,56,20,40,37,37,103,44,104,53,47,53,47,42,85,85,78,76,64,64,90,50,106〉
t2: 〈 -40,-79,-38,-38,-80,-66,-52,-52,-85,-59,-67,-59,-67,-54,14,-47,-15,-15,-56,0,-41,0,-41,1,-76,-18,-52,-18,-52,-22,-63,-63,18,-52,3,-50,-32,-32,-60,-11,-
47,-11,-47,-26,-67,-34,-51,-34,-51,-38,-59,-59,-22,-51,-18,-4,-32,-4,-32,-21,-17,-17,7,-27,-39,-39,-10,-39,-31〉
t3: 〈 -49,50,-28,-28,51,33,10,10,64,15,35,15,35,20,-102,39,-44,-44,39,-79,14,-79,14,-65,81,-22,28,-22,28,-13,58,58,-51,44,-63,15,-24,-24,62,-52,8,-52,8,-
31,57,-1,12,-1,12,-8,45,45,-7,19,6,-56,-8,-56,-8,-35,-9,-9,-68,-10,22,22,-30,5,25〉
t4: 〈 15,-23,-34,-34,-9,-42,-49,-49,-15,-16,-39,-16,-39,-52,-24,-58,-55,-55,13,-27,-47,-27,-47,-57,-28,-46,-54,-46,-54,-71,-29,-29,-48,-59,-67,-60,-57,-57,-
41,-52,-55,-52,-55,-59,-53,-62,-54,-62,-54,-61,-50,-50,-68,-57,-75,-62,-63,-62,-63,-61,-63,-63,-63,-67,-64,-64,-72,-64,-70〉
t5: 〈 67,39,75,-94,68,22,52,-62,58,145,57,-97,-32,-42,22,11,39,-84,86,94,82,-106,-107,-58,50,111,47,-144,-53,-50,130,-87,-77,-29,-42,-8,13,-54,8,51,28,-
129,-66,-41,7,39,20,-105,-33,-27,58,-75,-69,-22,-34,18,14,-95,-62,-32,51,-139,-61,-45,35,-89,-60,-27,-55〉
t6: 〈 67,39,-94,75,68,22,-62,52,58,-97,-32,145,57,-42,22,11,-84,39,86,-106,-107,94,82,-58,50,-144,-53,111,47,-50,-87,130,-77,-29,-42,-8,-54,13,8,-129,-
66,51,28,-41,7,-105,-33,39,20,-27,-75,58,-69,-22,-34,-95,-62,18,14,-32,-139,51,-61,-45,-89,35,-60,-27,-55〉
t7: 〈 94,-82,44,44,-25,-47,-3,-3,-83,12,-50,12,-50,-11,147,-90,56,56,-66,119,-40,119,-40,84,-122,46,-46,46,-46,20,-86,-86,90,-75,72,-40,30,30,-124,69,-
26,69,-26,38,-91,7,-22,7,-22,12,-71,-71,17,-34,-57,70,-5,70,-5,43,-13,-13,87,-5,-47,-47,38,-17,-54〉
t8: 〈 -28,93,75,75,21,95,95,95,68,46,101,46,101,123,-23,115,79,79,1,19,107,19,107,87,80,55,110,55,110,114,84,84,51,136,52,112,91,91,97,69,112,69,112,
101,109,96,104,96,104,104,111,111,111,119,104,73,107,73,107,93,100,100,77,119,114,114,101,115,130〉

TABLE 4: Counter-example for proving Theorem 3

Table 4. With this counter-example,{t1, t2, t3, t4} is a skyline
group for SUM, whereas none of{t1, t2, t3}, {t1, t2, t4},
{t1, t3, t4}, or {t2, t3, t4} is on the 3-tuple skyline.

5 ALGORITHMS
5.1 Dynamic Programming Algorithm Based on
Order-Specific Property

Consider an arbitrary2 order of then tuples in the input
table, denoted byt1, . . . , tn. Let Tr be the set of the first
r according to this order, i.e.,Tr={t1, . . . , tr}. Let Skyr

k

be set of all skylinek-tuple groups with regard toTr, i.e.,
each group inSkyr

k
is not dominated by any otherk-tuple

group consisting solely of tuples inTr. One can see that
our original problem can be considered as findingSkyn

k
. We

now develop a dynamic programming algorithm which finds
Skyn

k
by recursively solving the “smaller” problems of finding

Skyn−1

k
andSkyn−1

k−1
, etc.

For ease of presentation, we assume aggregate function
SUM in all the propositions, algorithms, and explanations in
this section. At the end of the section, we shall explain why
the idea is also applicable for MIN and MAX. The algorithm
is based on the following idea—All skylinek-tuple groups
in Skyn

k
can be partitioned into two disjoint setsS1 andS2

(Skyn
k

≡ S1 ∪ S2 and S1 ∩ S2 = ∅) according to whether
a group containstn or not. In particular,S1 = {G|G ∈
Skyn

k
, tn /∈ G} andS2 = {G|G ∈ Skyn

k
, tn ∈ G}. One can

see thatS1 ⊆ Skyn−1

k
. On the other hand,S2 is subsumed by

a set of groups that can be expanded fromSkyn−1

k−1
, the skyline

(k-1)-tuple groups with regard toTn−1. More specifically,
given a skylinek-tuple group that containstn, if we remove
tn from it, then the resulting group belongs toSkyn−1

k−1
. These

two properties are formally presented as follows. proof. Note
that Proposition 2 can be directly derived from Theorem 1.

Proposition 1 GivenG∈Skyn
k

, if tn /∈G, thenG∈Skyn−1

k
.

Proof: We prove this by contradiction. AssumeG /∈
Skyn−1

k
. Then, there must be ak-tuple groupG′ ∈ Skyn−1

k

such thatG′ ≻ G. There are two possible cases. (A)G′ ∈
Skyn

k
: It contradicts withG ∈ Skyn

k
. (B) G′ /∈ Skyn

k
: There

must exist ak-tuple groupG′′ ∈ Skyn
k

such thatG′′ ≻ G′.

2. We consider a random order in the experimental studies andleave the
problem of finding an optimal order (in terms of efficiency) tofuture work.

By transitivity of dominance relationship,G′′ ≻ G. This also
contradicts withG ∈ Skyn

k
. HenceG ∈ Skyn−1

k
.

Proposition 2 Under aggregate function SUM, given
G∈Skyn

k
, if tn∈G, thenG\{tn}∈ Skyn−1

k−1
.

Algorithm 1: sky group(k, n): Dynamic programming
algorithm based on order-specific property

Input : n: input tuplesTn={t1, . . . , tn}; k: group size;k ≤ n
Output : Skyn

k : skyline k-tuple groups amongTn

1 if Skyn

k is computedthen
2 return Skyn

k ;
3 if k == 1 then
4 S+

2 ← {{tn}};
5 else
6 S+

2 ← ∅;
7 Skyn−1

k−1
← sky group(k-1, n-1);

8 foreach groupG ∈ Skyn−1

k−1
do

9 candidate group ← G ∪ {tn};
10 S+

2 ← S+

2 ∪ {candidate group};
11 if k < n then
12 Skyn−1

k
(i.e., S+

1) ← sky group(k, n-1);
13 else
14 S+

1 ← ∅;
15 Cn

k ← S+

1 ∪ S+

2 ;
16 Skyn

k ← skyline(Cn

k);
17 return Skyn

k ;

We further explain the dynamic programming algorithm
by referring to the outline in Algorithm 1. The idea is also
illustrated in Figure 2. The functionsky group(k, n) is for
finding Skyn

k
. It first recursively computesSkyn−1

k−1
(Line

7). By adding tn into each group inSkyn−1

k−1
(Line 8-10),

the algorithm obtains a superset of the aforementionedS2,
according to Proposition 2. We denote this supersetS+

2 . By
recursively calling thesky group function (Line 12), it further
computesSkyn−1

k
, which is a superset of the aforementioned

S1, according to Proposition 1. We also denoteSkyn−1

k
by

S+

1 . S+

1 andS+

2 thus contain all necessary candidate groups
for Skyn

k
. Thus, the skyline over candidate groups (Cn

k
=S+

1

∪ S+

2 , Line 15) is guaranteed to be equal toSkyn
k

. Existing
skyline query algorithms (e.g., [5], [10], [12]) can be applied
overCn

k
. We useskyline() to refer to such algorithms (Line

16). The number of candidate groups considered (|S+

1 ∪ S+

2 |)
can potentially be much smaller than the number of all possible

8

groups formed by all tuples, i.e.,
(

n

k

)

.
Note that Skyn

k
is needed in calculating bothSkyn+1

k

andSkyn+1

k+1
. The algorithm recursively callssky group(k, n)

insidesky group (k, n+1), to compute and memoizeSkyn
k

.
Later it calls sky group(k, n) again insidesky group(k +
1, n+1). This time Skyn

k
is not recomputed. Instead, the

stored result is directly used (Line 1). Hence it is a dynamic
programming algorithm. The sequence of calculatingSky11,
...,Skyn

k
is shown by the dashed directed lines in Figure 2(b).

∪∪∪∪

add

1
1

−
−

n
kC

1
1

−
−

n
kSky

1−n
kC

1−n
kSky

n
kC

n
kSky

nt

k k

(a)

nSky

1
1

−
−

n
kSky

1−nSky

1
1

+− knSky

}},...,{{.,., 1 k
k
k tteiSky

}}{{.,., 1
1
1 teiSky

kSkykSky}},...,{{.,., 1 kk tteiSky

(b)

Fig. 2: (a) CalculateSkyn
k

from Skyn−1

k−1
and Skyn−1

k
; (b)

Dynamic programming algorithm for calculatingSkyn
k

Our discussion in this section so far assumed SUM. For
MIN and MAX, Proposition 2 requires a small modification,
as shown in the following Proposition 3.

Proposition 3 Under aggregate function MIN and MAX, giv-
enG∈Skyn

k
, if tn∈G, then there exists a groupG′ ∈ Skyn−1

k−1

such thatF (G′ ∪ {tn})=F (G).
The implication of the applicability of Proposition 3 (instead

of Proposition 2) for MIN and MAX is that, if we still apply
Algorithm 1, theS+

2 produced by Line 8-10 is not guaranteed
to be a superset of the aforementionedS2. In other words, Line
16, which applies the skyline operation over candidate groups,
cannot guarantee to produceSkyn

k
. However, the algorithm

can still guarantee that the result of it contains all distinct
aggregate vectors inSkyn

k
, based on Proposition 3. Note

that our goal is to find all distinct skyline vectors and their
accompanying (sample) skyline groups for MIN and MAX.
Hence the algorithm suffices for our goal without change.

5.2 Iterative Algorithm Based on Weak
Candidate-Generation Property

The weak candidate-generation property (Definition 2) can
be summarized as follows. Consider the scenario when every
skyline group has a distinct aggregate vector. Given a skyline
groupG and anyi, at least onei-tuple sub-group ofG must be
a skylinei-tuple group. Based on this property, Algorithm 2
iteratively generates candidatei-tuple groups by adding new
tuples into skyline (i−1)-tuple groups (Line 6-12) and applies
skyline algorithm over these candidates to find skylinei-tuple
groups (Line 14). At every step of iteration, the algorithm
only needs to generatei-tuple candidates by extending skyline
(i− 1)-tuple groups instead of all (i− 1)-tuple groups. Hence
it effectively prunes candidate groups by generation.

In reality, multiple skyline groups can have the same aggre-
gate vector. The aforementioned statement is not true anymore.
That is, given a skyline groupG and anyi, it is possible
that none of itsi-tuple sub-groups is a skylinei-tuple group.
However, by Definition 2 and Theorem 2, a slightly different

statement can be made for MIN and MAX—Given a skyline
k-tuple groupGk and anyi, there exists at least a skylinei-
tuple groupGi that, when padded with otherk−i tuples, will
result in a skylinek-tuple groupG′

k
such thatF (G′

k
)=F (Gk).

Furthermore, given any skylinei-tuple groupG′

i
such that

F (G′

i
)=F (Gi), we can padG′

i
with k−i other tuples to get

a skyline k-tuple group that has the same aggregate vector
asGk. Therefore, although Algorithm 2 does not produce all
skyline groups, it guarantees to find all distinct skyline vectors.

Algorithm 2: sky group(k, n): Iterative algorithm based
on weak candidate-generation property

Input : n: input tuplesTn={t1, . . . , tn}; k: group size;k ≤ n
Output : Skyk: skyline k-tuple groups amongTn

1 C1 ← Tn;
2 Sky1 ← skyline(C1);
3 for i← 2 to k do
4 //generate candidatei-tuple groupsCi from skyline

i−1-tuple groupsSkyi−1.
5 Ci ← ∅;
6 foreach G ∈ Skyi−1 do
7 foreach t ∈ Tn do
8 //generate candidate group
9 if t /∈ G then

10 G′ ← G ∪ {t};
11 if G′ /∈ Ci then
12 Ci ← Ci ∪ {G

′};
13 //generate skylinei-tuple groupsSkyi based on candidates

Ci

14 Skyi ← skyline(Ci);
15 return Skyk

On Feasibility of Combining Order-Specific and Weak
Candidate-Generation Properties: The order-specific and
weak candidate-generation properties cannot be meaningfully
combined. The candidate and skyline groups generated in
Algorithm 2 are with respect to alln tuples, for different
group sizek. However, the candidate and skyline groups in
Algorithm 1 are with respect to the firsti (i=1..n) tuples
by a particular order. The combination is possible at the last
step of Algorithm 1. We can take the intersection ofCn

k

from Algorithm 1 andCk from Algorithm 2 and then invoke
skyline(Cn

k
∩ Ck). Even for this last step, the cost saving in

skyline() due to less candidates may not make up for the
extra cost in producing both candidate setsCn

k
andCk.

Complexity Analysis: The worst-case complexity of both
Algorithms 1 and 2 isO(

(

n

k

)

), which is as poor as the com-
plexity of the brute-force approach of enumerating all possible
groups as candidates. We note that similarly the worst-case
complexity of frequent itemset mining algorithms [1] is also
exponential and equally poor as that of a brute-force approach.
For both problems, it is the characteristics of real datasets that
enables the algorithms to prune many candidates and thus to
achieve better efficiency in reality. Specifically, one can see
from Algorithms 1 and 2 that a critical factor determining the
average-case complexity of these algorithms is the number
of unique i-tuple skyline vectors in aj-tuple subset of the
database (wherei ∈ [1, k] and j ∈ [1, n]) - which in turn
depends on the underlying data distribution. For example, the
number of unique skyline vectors tends to be small when

9

values of different attributes are positively correlated:In the
extreme-case scenario where all attributes share the same
value, the number of unique skyline vector is always 1 for all
i andj. On the other hand, there tends to be a large number of
unique skyline vectors when the attributes are independently
distributed. We shall evaluate the efficiency of Algorithms1
and 2 over real-world datasets in the experiments section.
5.3 From Distinct Vectors to Equivalent Groups

For MIN and MAX, even the output size - i.e., the number
of skyline groups produced - may be too large to explicitly
compute and store. As discussed in Section 4.1, for output
compression, we only need to retain one representative sky-
line group for each distinct aggregated vector. To be more
specific, it is sufficient forSkyn

k
in Algorithm 1 andSkyk

in Algorithm 2 to contain one representative group for each
distinct aggregated vector ofk-tuple groups. It can be easily
achieved by a simple modification of the skyline algorithm at
Line 16 of Algorithm 1 and Line 14 of Algorithm 2. Whenever
a candidate group is compared with current groups in the
skyline, we prune it if it is equivalent to some existing group.
This will further reduce the size of candidate groups and the
number of group comparisons in succeeding iterations.

For input pruning, in the case of SUM and MIN, we remove
all tuples dominated by at leastk others. In the case of
MAX, we remove all tuples not on the skyline. We showed in
Section 4.2 that such input pruning techniques are safe - i.e.,
we will still obtain all distinct vectors and their representatives.

As discussed in Section 4.1, although in many cases distinct
vectors and their representative groups suffice, a user may
request all skyline groups equivalent to a particular aggregated
vector, for applying further criteria in choosing a group. To
return such equivalent groups, various postprocessing steps are
required, due to output compression and input pruning. Below
we discuss such postprocessing for individual functions.

Note that the same Algorithm 1 and 2 work if we do not
apply output compression and input pruning. However, even
if our application is to ultimately find all skyline groups, it is
still beneficial to apply these two techniques and use postpro-
cessing steps to find all skyline groups. Output compression
and input pruning together not only reduce the output size, but
also save computational cost by allowing the algorithms to deal
with smaller input and intermediate results. In Section 6 we
present experimental results to compare the execution timeof
our methods with and withoutk-dominator tuple pruning. The
results verify the benefit of applying this pruning technique
regardless of the ultimate output—representative groups for
all distinct aggregated vectors or all skyline groups.
SUM: No postprocessing is necessary for SUM. First, ak-
dominator tuple cannot appear in any skylinek-tuple group, as
discussed in Section 4.2. Thus, input pruning will not trigger
postprocessing for SUM. Second, if the ultimate goal is to
fetch all skyline groups, output compression should not be
applied, because there is no effective way of reconstructing
skyline groups from distinct aggregated vectors. In Line 16
of Algorithm 1, all skylinei-tuple groups should be retained,
without applying the aforementioned simple modification that
removes equivalent groups. Note that SUM only satisfies the
order-specific property. Thus, only Algorithm 1 applies.

Algorithm 3: Finding skyline groups with identical aggre-
gated vectors (MIN function)

Input : input tuplesR; k: group size;k < |R|
Output : Sky: skyline k-tuple groups forR

1 Sky ← ∅;
2 T ← removek-dominator tuples fromR;
3 n ← |T |; /* number the tuples inT as t1, ..., tn */

4 Skyk ← sky group(k, n); /* Algorithm 1 or Algorithm 2 */

5 foreach skylinek-tuple groupG ∈ Skyk do
6 RG ← the set of tuples inR that dominate or are

equivalent to the aggregated vector ofG;
7 foreach k-combinationG′ of tuples inRG do
8 Sky ← Sky ∪ {G′};
9 return Sky;

Algorithm 4: Finding skyline groups with identical aggre-
gated vectors (MAX function)

Input : input tuplesR; k: group size;k < |R|
Output : Sky: skyline k-tuple groups amongR

1 Sky ← ∅;
2 T ← removek-dominator tuples fromR;
3 n ← |T |; /* number the tuples inT as t1, ..., tn */

4 Skyk ← sky group(k, n); /* Algorithm 1 or Algorithm 2 */

5 foreach skylinek-tuple groupG ∈ Skyk do
6 v ← the aggregated vector ofG
7 candidate group ← ∅;
8 i← 1;
9 p[1] ← null;

10 while i > 0 do
11 /* Note that it is fine to select a tuple multiple times

because a tuple can get the same value asv on
multiple dimensions. */

12 candidate group ← candidate group \ {p[i]};
13 p[i] ← get the next tuple inR that hasv’s value on

the ith dimension;
14 if p[i] == null then i← i−1; continue;
15 candidate group ← candidate group ∪ {p[i]};
16 if |candidate group| > k then continue;
17 if i== d then
18 /* d is the number of dimensions. */

k′ ← k − |candidate group|;
19 if k′== 0 then
20 Sky ← Sky ∪ {candidate group};
21 else
22 R′ ← R \ candidate group;
23 foreach k′-tuple combinationG′ among the

tuples inR′ do
24 Sky ← Sky ∪ {candidate group ∪

G′};
25 else
26 i← i+ 1;
27 p[i] ← null;
28 return Sky;

MIN : Two factors contribute to the need for postprocessing.
First, the prunedk-dominator tuples may appear in skyline
groups. Second, the aforementioned equivalent group removal
performed at Line 16 of Algorithm 1 and Line 14 of Algo-
rithm 2 will only keep one representative for each distinct
aggregated vector. Note that both algorithms are applicable
to MIN since MIN satisfies both order-specific and weak

10

candidate-generation properties. At the end of both algorithms,
we obtainSkyk, which contains representatives of all distinct
aggregated vectors, but not necessarily all skylinek-tuple
groups. To generate all skyline groups fromSkyk for MIN, we
follow Algorithm 3. For each representative group, we find all
the tuples that dominate or are equal to its aggregated vector.
Any k−combination of these tuples is a skylinek-tuple group.
This is based on the results from Section 4.1.
MAX : Algorithms 1 and 2 are both applicable to MAX.
Similar to MIN, MAX needs postprocessing due to both input
pruning and output compression. We thus devise Algorithm 4
to produce all skyline groups from representative groups.

For each representative groupG that is found by Algo-
rithms 1 and 2, Algorithm 4 uses a backtracking process to
find all skyline groups that are equivalent toG. Denote the
aggregated vector forG asv. On each dimension, we maintain
a list of tuples fromR (all input tuples to be considered) that
attain v’s value on that dimension. We use the backtracking
algorithm to enumerate all possible groups of the tuples from
these lists, such that the groups have the same aggregated
vectorv and have less than or equal tok tuples. If a group has
less thank tuples, it means there can be some “free” tuples.
Any combination of other tuples will complement this group
to form a skylinek-tuple group (Line 25-27).

A special case for MAX function is when there is only one
distinct aggregated vector, i.e., all skylinek-tuple groups reach
the highest possible value on every dimension. In Algorithms 1
and 2, whenever ani-tuple candidate group (i ≤ k) is
generated, we test if this group attains the highest possible
value on every attribute. If so, we have already found the
aggregated vector for all skyline groups. Using that vector,
we either find one representative group or all skyline groups,
by a backtracking process that is essentially the same as
Algorithm 4. We omit the details.

6 EXPERIMENTS

The algorithms were implemented in C++. We executed all
experiments on a Dell PowerEdge 2900 III server running
Linux kernel 2.6.27-7, with dual quad-core Xeon 2.0GHz
processors, 2x6MB cache, 8GB RAM, and three 250GB SATA
HDs in RAID5.

Datasets: We collected 512 tuples of NBA players who
played in the 2009 regular season [20]. The tuple of each
player has 5 statistics (i.e., 5 attributes) that measure the
player’s performance. The statistics are points per game (PPG),
rebounds per game (RPG), assists per game (APG), steals
per game (SPG), and blocks per game (BPG). Players and
groups of players are compared by these statistics and their
aggregates.

Another dataset is a collection of 35000 tuples that represent
stocks for all the publicly traded firms as of December31st,
2009 in several international markets [25]. Each tuple has 4
attributes, which are market capital (MC), stock price (SP),
interest coverage ratio (ICR) and net income (NI). All the
values were converted to US dollars.

To study the scalability of our methods, we also experi-
mented with synthetic datasets produced by the data generator
in [5]. The datasets have 1 to 10 million tuples, on 5 attributes.

The data generator allows us to produce datasets where the
attributes are correlated, independent, and anti-correlated. In
independent datasets, the attribute values of a tuple were
generated by a uniform distribution. In correlated datasets,
attribute values were generated using normal distributions.
Anti-correlated datasets were generated by a more complex
procedure, which involves adding and subtracting values from
otherwise uniformly distributed attribute values.

Aggregate Functions and Methods Compared: We in-
vestigated the performance of the two algorithms discussedin
Section 5, namely the algorithms based on order-specific prop-
erty (OSM) and weak candidate-generation property (WCM).
We also compared these methods with the baseline method
(BASELINE), which is a direct adaptation of the general
framework in [31] for our skyline group problem. (The de-
tailed discussion of [31] is in Section 2.) We executed these
methods for the aggregate functions discussed in previous
sections—SUM, MIN, and MAX.

Parameters: We ran our experiments under combinations of
two parameter values, which are number of tuples, i.e., dataset
size (n) and number of tuples per group, i.e., group size (k).

Values Measured: For each applicable combination of ag-
gregate function, method, and parameter values, we measured
the execution time needed to find all distinct aggregate vectors
and their representative groups, as well as the time to find all
skyline groups. Besides execution time, we also measured the
total number of candidate groups generated and number of
pairwise group (aggregated vector) comparisons in the process.
Due to the iterative nature of OSM and WCM, they call
the basic skyline function multiple times. Hence, the total
number of generated candidate groups is the cumulative sizes
of inputs to all skyline function invocations. Furthermore,
OSM produces candidate groups by merging two disjoint
sets of smaller groups. Here input size was calculated as the
summation of the sizes of disjoint sets.

n
k = 2 k = 4 k = 6

G S V G S V G S V

1 M
SUM

4×10
11

247 247
4×10

22

1654 1654
1×10

33

6146 6146
MIN 187 141 1914 436 12816 870
MAX 368 220 147 73 2.9 M 1

4 M
SUM

8×10
12

219 219
1×10

25

1610 1610
6×10

36

7482 7482
MIN 179 131 2182 461 17784 1148
MAX 396 274 164 78 11 M 1

7 M
SUM

2×10
13

221 221
1×10

26

1374 1374
2×10

38

5825 5825
MIN 188 134 2193 455 16347 1002
MAX 552 323 354 90 55 M 1

10 M
SUM

4×10
13

210 210
4×10

26

1300 1300
1×10

39

4487 4487
MIN 183 133 2130 450 15442 913
MAX 402 224 968 63 0.8 B 1

TABLE 5: Number of all groups (G), skyline groups (S), distinct
skyline group vectors (V), under variousn, k, and functions. Corre-
lated synthetic dataset. M: million, B: billion

6.1 Study of Different Aggregate Functions

Size of Output under Different Functions: Table 5 shows,
for different n, k, and aggregate functions, the number of
all possible groups (G), the number of all skyline groups
(S), and the number of distinct aggregate vectors (V) for the
skyline groups. The table is for correlated synthetic datasets.
The observations made on the NBA dataset were similar.
It can be seen that G quickly becomes very large, which

11

 0.001

 0.01

 0.1

 1

 10

1 3 5 7

E
xe

cu
tio

n
T

im
e

Number of Tuples per Group

3 SUM
3 MAX
3 MIN

(a) n = 300

 0.01

 0.1

 1

 10

100 200 300 400 500

E
xe

cu
tio

n
T

im
e

Number of Tuples

3 SUM
3 MAX
3 MIN

(b) k = 3

 10

 100

 1000

 10000

 100000

 1e+06

1 3 5 7

T
ot

al
 C

an
di

da
te

 G
ro

up
s

Number of Tuples per Group

3 SUM
3 MAX
3 MIN

(c) n = 300

 1000

 10000

 100000

 1e+06

100 200 300 400 500

T
ot

al
 C

an
di

da
te

 G
ro

up
s

Number of Tuples

3 SUM
3 MAX
3 MIN

(d) k = 3
Fig. 3: (a)-(b): Execution time (seconds, log scale) and (c)-(d): number of candidate groups (log scale), mixture of SUM/MAX/MIN

PPG RBG APG SPG BPG
G1 Carmelo Anthony Kobe Bryant Kevin Durant LeBron James Dwyane Wade 283.2 63.4 52.2 15.2 7.6
G2 Andrew Bogut Marcus Camby Monta Ellis Dwight Howard Josh Smith 166.2 96.4 32.2 13.4 19.4
G3 Trevor Ariza Monta Ellis Dwyane Wade Dwight Howard Josh Smith 202 72.6 43.2 16.6 14
G4 Carlos Boozer Baron Davis LeBron James Rajon Rondo Chris Paul 193.8 61.2 80.6 17.6 4.8
G5 Andrew Bogut LeBron James Chris Paul Dwight Howard Jason Kidd 185.8 81 64 14 13.8

PPG:Point Per Game, RBG: ReBound per Game, APG: Assist Per Game, SPG: Steal Per Game, BPG: Block Per Game

TABLE 6: Sample skyline groups from 512 players, 5 players per group

indicates that any exhaustive method will suffer due to the
large space of possible answers. We want to point out that
the number of skyline vectors (V) can be large (e.g., under
k=6). As discussed in Section 1, these distinct vectors become
the input to further post-processing such as filtering, ranking
and browsing. When a particular skyline vector is chosen
by a user, the corresponding equivalent skyline groups are
generated upon request.

Among the three functions, in general SUM has the largest
number of skyline vectors and MAX results in the smallest
output size (V). This is due to the intrinsic characteristics
of these functions. In computing the aggregate vector for a
group, SUM reflects the strength of all group members on each
dimension. Hence it is more difficult for a group to dominate
or equal to another group on every dimension. In contrast,
MIN (MAX) chooses the lowest (highest) value among group
members on each dimension. Hence skyline groups are formed
by relatively small number of extremal tuples.

On the other hand, if we compare the sizes of all skyline
groups including the equivalent ones, it is rare under SUM to
have multiple skyline groups sharing the same aggregate vec-
tor. MAX results in much more equivalent groups. Moreover,
under MAX, when group sizek is larger than or equal to the
number of attributes (5 for the datasets), all skyline groups
have the same aggregate vector that attains the highest value
on every attribute.

Dealing with a Mixture of Aggregate Functions: Our
methods allow a mixture of different aggregate functions ap-
plied on different attributes. OSM can handle arbitrary mixture
of SUM, MIN, and MAX, while WCM can handle any mixture
of MIN and MAX. Figure 3 shows the execution time of OSM
over the 5-attribute NBA dataset, for 3 different mixtures of
functions. For example, 3SUM means SUM function on the
first 3 of the 5 attributes, and MIN and MAX on the remaining
2 attributes. From Figure 3 we can see that SUM function is
typically more expensive. This is because output compression
has less effect on SUM, under which it is more difficult for a
group to dominate other groups.

6.2 Experiments on NBA Dataset

Sample Resultant Skyline Groups:Table 6 shows several
sample skyline5-tuple groups under aggregate function SUM,

from the NBA dataset. We see the sample groups are formed
by elite players with different strengths. For instance, G1is
excellent in scoring (PPG), G2 excels in defense (RBG and
BPG), and G3 is a very balanced group that is strong on many
aspects although not the best on any dimension.

Comparison of Various Methods: Figure 4-6 show the
execution time and number of generated candidate groups, by
BASELINE/OSM/WCM under all applicable functions, over
the NBA dataset. Figure 7 further shows the number of pair-
wise group (aggregate vector) comparisons performed by these
algorithms under MIN and MAX. In sub-figure (a) and (c) of
these figures, we fix the size of dataset (n) to 300 tuples and
vary group size (k). In sub-figure (b) and (d) of these figures,
we fix the group size (k=5 for SUM/MIN andk=3 for MAX)
and vary dataset size. We observed that OSM/WCM performed
substantially (often orders of magnitude in execution time)
better than BASELINE. Without the properties, BASELINE
produced much more candidate groups than OSM/WCM and
thus incurred much more pairwise group (aggregate vector)
comparisons inside skyline function invocations.

Effect of Input Pruning: Input pruning was applied in all
the experiments for Figure 4-6. It had a good impact on the
performance of all algorithms, since it significantly reduced the
size of input. Table 7 shows that, in all considered cases on
NBA dataset, less than 100 tuples remained afterk-dominator
tuple pruning was applied. Figure 8 shows that substantial
saving on execution time was achieved for all functions.

n k = 1 k = 3 k = 5 k = 7
100 19 31 37 44
200 22 37 47 57
300 24 50 61 67
400 29 62 78 86
500 30 62 83 94

TABLE 7: Number of tuples dominated by< k tuples in NBA

Search Space Pruning Power of OSM and WCM:
Figure 5, 6 and 7 compare OSM and WCM, in terms of
execution time, number of candidate groups produced, and
number of pairwise group (aggregate vector) comparisons
incurred. We observed that, in terms of execution time, OSM
performed better than WCM on the NBA dataset under both
MIN and MAX. Although WCM demonstrated better pruning
power in most cases as it resulted in less candidate groups

12

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

1 3 5 7

E
xe

cu
tio

n
T

im
e

Number of Tuples per Group

BASELINE
OSM

(a) n = 300

 1

 10

 100

 1000

 10000

100 200 300 400 500

E
xe

cu
tio

n
T

im
e

Number of Tuples

BASELINE
OSM

(b) k = 5

 10
 100

 1000
 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09

1 3 5 7

T
ot

al
 C

an
di

da
te

 G
ro

up
s

Number of Tuples per Group

BASELINE
OSM

(c) n = 300

 10000

 100000

 1e+06

 1e+07

 1e+08

100 200 300 400 500

T
ot

al
 C

an
di

da
te

 G
ro

up
s

Number of Tuples

BASELINE
OSM

(d) k = 5
Fig. 4: (a)-(b): Execution time (seconds, logarithmic scale) and (c)-(d): number of candidate groups (logarithmic scale), SUM

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

1 3 5 7

E
xe

cu
tio

n
T

im
e

Number of Tuples per Group

BASELINE
OSM
WCM

(a) n = 300

 0.1

 1

 10

 100

 1000

 10000

100 200 300 400 500
E

xe
cu

tio
n

T
im

e

Number of Tuples

BASELINE
OSM
WCM

(b) k = 5

 10
 100

 1000
 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09

1 3 5 7

T
ot

al
 C

an
di

da
te

 G
ro

up
s

Number of Tuples per Group

BASELINE
OSM
WCM

(c) n = 300

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

100 200 300 400 500

T
ot

al
 C

an
di

da
te

 G
ro

up
s

Number of Tuples

BASELINE
OSM
WCM

(d) k = 5
Fig. 5: (a)-(b): Execution time (seconds, logarithmic scale) and (c)-(d): number of candidate groups (logarithmic scale), MIN

 0.001

 0.01

 0.1

 1

1 2 3 4

E
xe

cu
tio

n
T

im
e

Number of Tuples per Group

BASELINE
OSM
WCM

(a) n = 300

 0.001

 0.01

 0.1

100 200 300 400 500

E
xe

cu
tio

n
T

im
e

Number of Tuples

BASELINE
OSM
WCM

(b) k = 3

 10

 100

 1000

 10000

 100000

1 2 3 4

T
ot

al
 C

an
di

da
te

 G
ro

up
s

Number of Tuples per Group

BASELINE
OSM
WCM

(c) n = 300

 100

 1000

 10000

100 200 300 400 500

T
ot

al
 C

an
di

da
te

 G
ro

up
s

Number of Tuples

BASELINE
OSM
WCM

(d) k = 3
Fig. 6: (a)-(b): Execution time (seconds, logarithmic scale) and (c)-(d): number of candidate groups (logarithmic scale), MAX

 100
 1000

 10000
 100000
 1e+06
 1e+07
 1e+08
 1e+09
 1e+10

1 3 5 7

T
ot

al
 C

om
pa

ris
on

s

Number of Tuples per Group

BASELINE
OSM
WCM

(a) n = 300

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

100 200 300 400 500

T
ot

al
 C

om
pa

ris
on

s

Number of Tuples

BASELINE
OSM
WCM

(b) k = 5

 100

 1000

 10000

 100000

1 2 3 4

T
ot

al
 C

om
pa

ris
on

s

Number of Tuples per Group

BASELINE
OSM
WCM

(c) n = 300

 1000

 10000

 100000

100 200 300 400 500

T
ot

al
 C

om
pa

ris
on

s

Number of Tuples

BASELINE
OSM
WCM

(d) k = 3
Fig. 7: Number of pairwise group comparisons by different methods for MIN (a)-(b) and MAX (c)-(d)

 0.1

 1

 10

100 200 300 400 500

E
xe

cu
tio

n
T

im
e

Number of Tuples

With K-Dominator Pruning
Without K-Dominator Pruning

(a) SUM

 0.01

 0.1

 1

 10

100 200 300 400 500

E
xe

cu
tio

n
T

im
e

Number of Tuples

With K-Dominator Pruning
Without K-Dominator Pruning

(b) MIN

 0.01

 0.1

 1

100 200 300 400 500

E
xe

cu
tio

n
T

im
e

Number of Tuples

With K-Dominator Pruning
Without K-Dominator Pruning

(c) MAX
Fig. 8: Effect of input pruning on OSM,k = 3

(Figures 5(c), 5(d), 6(c), and 6(d)), WCM required more
pairwise group comparisons than OSM (Figure 7). Hence it
lost in comparison with OSM.

Effect of Output Compression: Figure 9 shows the cost
(in execution time) of post-processing for obtaining all skyline
groups from distinct skyline vectors, on the NBA dataset, for
n = 100, MAX function, and OSM algorithm. We can see that
in this configuration finding all skyline groups only doubled
the execution time. This verifies that, even though the problem
of finding all skyline groups from distinct vectors is an NP-
hard problem, in practice it is usually efficient due to the
small number of tuples that can “hit” MAX attribute values,
as explained in Section 4.1. Asn increases, naturally the cost
of post-processing will also increase. However, in realitywe
may only need to produce the equivalent groups for a skyline
vector chosen by the user, instead of for all skyline vectors.

 0

 0.005

 0.01

 0.015

 0.02

1 2 3 4

E
xe

cu
tio

n
T

im
e

(s
ec

on
d)

Number of Tuples per Group

Distinct Aggregated Vectors
All Skyline Groups

Fig. 9: Finding all skyline groups for MAX,n= 100, OSM

6.3 Experiments on Stock Dataset

We also experimented on the Stock dataset. As the behavior
of our algorithms on this dataset is mostly similar to that
on the NBA dataset, we do not present extensive results.
Figure 10 shows the performance of OSM and WCM for
group sizek = 3 under various input sizes. It is observed
that, although the stock dataset is much bigger than the NBA
dataset, the execution time is still considerably small. This is

13

 0

 1

 2

 3

 4

 5

 6

 7

10000 15000 20000 25000 30000

E
xe

cu
tio

n
T

im
e

Number of Tuples

OSM

(a) SUM

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

10000 15000 20000 25000 30000

E
xe

cu
tio

n
T

im
e

Number of Tuples

OSM
WCM

(b) MIN

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

10000 15000 20000 25000 30000

E
xe

cu
tio

n
T

im
e

Number of Tuples

OSM
WCM

(c) MAX
Fig. 10: Execution time (seconds, logarithmic scale) on stock dataset, k = 3

 0
 10
 20
 30
 40
 50
 60

1 M 4 M 7 M 10 M

E
xe

cu
tio

n
T

im
e

Number of Tuples

OSM

(a) SUM

 0
 10
 20
 30
 40
 50
 60

1 M 4 M 7 M 10 M

E
xe

cu
tio

n
T

im
e

Number of Tuples

OSM
WCM

(b) MIN

 0

 5

 10

 15

 20

1 M 4 M 7 M 10 M

E
xe

cu
tio

n
T

im
e

Number of Tuples

OSM
WCM

(c) MAX
Fig. 11: Execution time (seconds) of OSM/WCM on correlated synthetic dataset with 5 attributes,k = 4

 10

 100

 1000

 10000

2 3 4 5

E
xe

cu
tio

n
T

im
e

Number of Dimensions

Anti-Correlated
Independent

Correlated

(a) SUM

 10

 100

2 3 4 5

E
xe

cu
tio

n
T

im
e

Number of Dimensions

Anti-Correlated
Independent

Correlated

(b) MIN

 1

 10

 100

2 3 4 5

E
xe

cu
tio

n
T

im
e

Number of Dimensions

Anti-Correlated
Independent

Correlated

(c) MAX
Fig. 12: Execution time (seconds, logarithmic scale) of OSM on different synthetic datasets,k = 3, n = 10 million

due to the effective input pruning. Table 8 shows that only
less than 300 tuples remained afterk-dominator tuple pruning
was applied. We also see that, in this dataset, WCM took less
execution time than OSM for MIN function. This is partly due
to the overhead of OSM in performing candidate generation
and skyline comparison for multiple (group size, table size)
combinations, as mentioned in Section 4.3.1.

6.4 Experiments on Synthetic Datasets

To show the scalability of our methods, we experimented on
the synthetic datasets with 1 to 10 million tuples. In Figure11,
we see that OSM/WCM can finish within a minute on these
large datasets, fork=4 and all 3 functions.

The same methods will not be as efficient on independent
or even anti-correlated data. Figures 12 and 13 show the
performance of OSM/WCM on three different datasets of
equal cardinality, under different number of attributes. We
see that the execution time on anti-correlated and independent
data increases quickly and soon the algorithm cannot finish
within reasonable amount of time. (Thus the corresponding
bars are not plotted.) This is not surprising. In anti-correlated
dataset, values of a tuple on different attributes are negatively
correlated. Hence it is more difficult to find a tuple dominating
other tuples. This means input pruning in such a dataset cannot
reduce the input size effectively, and OSM/WCM cannot prune
many candidates either. Attributes in real datasets may neither
be fully correlated nor fully anti-correlated. The attributes
often form groups, such asrebounds and blocks, assists
andsteals in basketball games. The attributes within the same
group are correlated, while the ones across different groups
tend to be independent or anti-correlated. A direction for future

n k = 3 k = 5 k = 7
10000 99 139 178
15000 126 172 232
20000 130 180 239
25000 148 205 263
30000 143 217 281

TABLE 8: Number of tuples dominated by less thank tuples in
stock dataset

 10

 100

2 3 4 5

E
xe

cu
tio

n
T

im
e

Number of Dimensions

Anti-Correlated
Independent

Correlated

(a) MIN

 1

 10

2 3 4 5

E
xe

cu
tio

n
T

im
e

Number of Dimensions

Anti-Correlated
Independent

Correlated

(b) MAX
Fig. 13: Execution time (seconds, logarithmic scale) of WCM on
different synthetic datasets,k = 3, n = 10 million

study is to investigate the performance of our methods on
synthetic data with such more realistic correlation patterns.

7 CONCLUSION

We proposed the novel problem of finding skyline groups
which lends itself to many real-world applications. We de-
veloped novel algorithmic techniques on output compression,
input pruning, and search space pruning to address the prob-
lem. For search space pruning, we identified a number of anti-
monotonic properties to efficiently remove non-skyline groups
from consideration. Based on the properties, we developed
dynamic programming and iterative algorithms for skyline
group search. Experimental results on real and synthetic
datasets verify that the proposed algorithms achieve orders of
magnitude performance gain over the baseline method.

14

ACKNOWLEDGMENT

The work of Zhang is supported in part by NSF under
grants 0852674, 0915834, and 1117297. The work of Li is
partially supported by NSF grants 1018865, 1117369, and
2011, 2012 HP Labs Innovation Research Award. The work of
Das is partially supported by NSF grants 0812601, 0915834,
1018865, a NHARP grant from the Texas Higher Education
Coordinating Board, and grants from Microsoft Research and
Nokia Research. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of
the author(s) and do not necessarily reflect the views of the
funding agencies.

REFERENCES

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules
in large databases. InVLDB, 1994.

[2] A. Anagnostopoulos, L. Becchetti, C. Castillo, A. Gionis, and S. Leonar-
di. Power in unity: forming teams in large-scale community systems.
In CIKM, 2010.

[3] S. Antony, P. Wu, D. Agrawal, and A. El Abbadi. Moolap: Towards
multi-objective olap. InICDE, 2008.

[4] W.-T. Balke, U. Guntzer, and J. Zheng. Efficient distributed skylining
for web information systems. InEDBT. 2004.

[5] S. Börzsönyi, D. Kossmann, and K. Stocker. The skylineoperator. In
ICDE, 2001.

[6] C. Chan, H. Jagadish, K. Tan, A. Tung, and Z. Zhang. Finding k-
dominant skylines in high dimensional space. InSIGMOD, 2006.

[7] C.-Y. Chan, H. Jagadish, K.-L. Tan, A. Tung, and Z. Zhang.On high
dimensional skylines. InEDBT. 2006.

[8] S. Chaudhuri, N. Dalvi, and R. Kaushik. Robust cardinality and cost
estimation for skyline operator. InICDE, 2006.

[9] B.-C. Chen, K. LeFevre, and R. Ramakrishnan. Privacy skyline: privacy
with multidimensional adversarial knowledge. InVLDB, 2007.

[10] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presorting.
In ICDE, 2003.

[11] E. Dellis and B. Seeger. Efficient computation of reverse skyline queries.
In VLDB, 2007.

[12] P. Godfrey, R. Shipley, and J. Gryz. Maximal vector computation in
large data sets. InVLDB, 2005.

[13] H.T.Kung, F.Luccio, and F.P.Preparata. On finding the maxima of a set
of vectors.JACM, 22(4), 1975.

[14] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the sky: an
online algorithm for skyline queries. InVLDB, 2002.

[15] T. Lappas, K. Liu, and E. Terzi. Finding a team of expertsin social
networks. InKDD, 2009.

[16] X. Lian and L. Chen. Monochromatic and bichromatic reverse skyline
search over uncertain databases. InSIGMOD, 2008.

[17] X. Lin, Y. Yuan, W. Wang, and H. Lu. Stabbing the sky: efficient skyline
computation over sliding windows. InICDE, 2005.

[18] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting stars:The k most
representative skyline operator. InICDE, 2007.

[19] M. Morse, J. M. Patel, and H. V. Jagadish. Efficient skyline computation
over low-cardinality domains. InVLDB, 2007.

[20] NBA Dataset. from http://www.databasebasketball.com/, 2012.
[21] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline

computation in database systems.TODS, 2005.
[22] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic skylines on uncertain

data. InVLDB, 2007.
[23] J. Pei, Y. Yuan, X. Lin, W. Jin, M. Ester, Q. Liu, W. Wang, Y. Tao,

J. X. Yu, and Q. Zhang. Towards multidimensional subspace skyline
analysis.TODS, 31(4), 2006.

[24] M. Sharifzadeh and C. Shahabi. The spatial skyline queries. In VLDB,
2006.

[25] Stock Dataset. from http://pages.stern.nyu.edu/∼adamodar/NewHome
Page/data.html, 2012.

[26] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive skyline
computation. InVLDB, 2001.

[27] Y. Tao, L. Ding, X. Lin, and J. Pei. Distance-based representative
skyline. In ICDE, 2009.

[28] Y. Tao, X. Xiao, and J. Pei. Subsky: Efficient computation of skylines
in subspaces. InICDE, 2006.

[29] P. Wu, C. Zhang, Y. Feng, B. Zhao, D. Agrawal, and A. El Abbadi.
Parallelizing skyline queries for scalable distribution.In EDBT. 2006.

[30] T. Xia and D. Zhang. Refreshing the sky: the compressed skycube with
efficient support for frequent updates. InSIGMOD, 2006.

[31] X. Zhang and J. Chomicki. Preference queries over sets.In ICDE, 2011.

Nan Zhang received the BS degree in Computer
Science from Peking University in 2001 and the
PhD degree in Computer Science from Texas
A&M University in 2006. He is an associate
professor of Computer Science at the George
Washington University. His current research in-
terests include databases and information secu-
rity/privacy. He is a member of the IEEE.

Chengkai Li is an Assistant Professor in the
Department of Computer Science and Engineer-
ing at the University of Texas at Arlington. His
research interests include databases, Web data
management and data mining. In particular, he
works on computational journalism, database
exploration, database testing, entity search and
query, and ranking and skyline queries. He
received his Ph.D. degree in Computer Sci-
ence from the University of Illinois at Urbana-
Champaign in 2007, and an M.E. and a B.S.

degree in Computer Science from Nanjing University, China, in 2000
and 1997, respectively. He is a member of the IEEE.

Naeemul Hassan received his B.S. degree in
Computer Science from Bangladesh University
of Engineering and Technology. He is currently a
Ph.D. candidate in the Department of Computer
Science and Engineering at the University of
Texas at Arlington. His research interests include
skyline analysis, computational journalism, and
social media analytics.

Sundaresan Rajasekaran received an M.S. de-
gree in Computer Science from the George
Washington University and a B.E. degree in
Computer Science from Anna University, India.
He is currently a Ph.D. candidate in the De-
partment of Computer Science at the George
Washington University. His research interests
include data privacy, network security and cloud
computing.

Gautam Das received the BTech degree in
computer science from IIT Kanpur, India, and
the PhD degree in computer science from the
University of Wisconsin, Madison. He is a pro-
fessor in the Computer Science and Engineering
Department at the University of Texas, Arlington.
Prior to joining the University of Texas, Arlington
in Fall 2004, he held positions at Microsoft Re-
search, Compaq Corporation, and the Univer-
sity of Memphis. His research interests include
data mining, information retrieval, databases,

algorithms, and computational geometry. He is currently interested in
ranking, top-k query processing, and sampling problems in databases
as well as data management problems in the deep web, P2P and
sensor networks, social networks, blogs, and web communities. His
research has resulted in more than 130 papers which received several
awards, including the IEEE ICDE 2012 Influential Paper award, VLDB
journal special issue on best papers of VLDB 2007, best paper of
ECML/PKDD 2006, and the best paper (runner up) of ACM SIGKDD
1998. He is on the editorial board of the journals the ACM Transactions
on Database Systems and the IEEE Transactions on Knowledge and
Data Engineering. He has served as the general chair of ICIT 2009,
program chair of COMAD 2008, CIT 2004, and SIGMOD-DMKD 2004,
and best paper awards chair of ACM SIGKDD 2006. His research
has been supported by grants from US National Science Foundation,
US Office of Naval Research, Department of Education, Texas Higher
Education Coordinating Board, Microsoft Research, Nokia Research,
Cadence Design Systems, and Apollo Data Technologies. He is a
member of the IEEE.

