On Skyline Groups

Nan Zhang Member, IEEE, Chengkai Li Member, IEEE, Naeemul Hassan, Sundaresan Rajasekaran,
Gautam Das Member, IEEE

Abstract —We formulate and investigate the novel problem of finding the skyline k-tuple groups from an n-tuple dataset—i.e., groups of
k tuples which are not dominated by any other group of equal size, based on aggregate-based group dominance relationship. The major
technical challenge is to identify effective anti-monotonic properties for pruning the search space of skyline groups. To this end, we first
show that the anti-monotonic property in the well-known Apriori algorithm does not hold for skyline group pruning. Then, we identify two
anti-monotonic properties with varying degrees of applicability: order-specific property which applies to SUM, MIN, and MAX as well
as weak candidate-generation property which applies to MIN and MAX only. Experimental results on both real and synthetic datasets
verify that the proposed algorithms achieve orders of magnitude performance gain over the baseline method.

Index Terms —Skyline Queries, Skyline Groups, Anti-Monotonic Properties

O

1 INTRODUCTION (i.e, AVG, since groups are of equal size), MIN and MAX.

The traditionalskyline tupleproblem has been extensivelylntuitively, SUM captures the collective strength of a goou
investigated in recent years [5], [10], [12], [26], [14], 12 while MIN/MAX compares groups by their weakest/strongest
[8]. Consider a database table oftuples andm numeric member on each attribute. Note that throughout the paper, we
attributes. The domain of each attribute has an applicatigsSume the larger the SUM/MIN/MAX values are, the better a
specific preference order, with “better” values being prefg 9rOUP iS. As an simple example, consider tvtuple groups—
over “worse” values. A tuple; dominatest, if and only if C={{0:3).(2,1),(2,2)} and ¢'={(2,1),(2,2),(0,2)}. Their
every attribute value of; is either better than or equal to the?99regate tuples under the function SUM are SUM¢(4,6)
corresponding value of, according to the preference ordeNd SUMG")=(4.5). HenceG: dominatesi:".

andt, has better value on at least one attribute. The set oflany real-world applications require to choose groups of
skyline tuples are those tuples that are not dominated by fjects. In the booming multi-billion dollar industry of kme
other tuples in the table. fantasy sports, gamers compete by forming and managing team

In this paper, we formulate and investigate the novel prof2Sters of real-world athletes who may or may not be in the
lem of computingskyline groupsin contrast to the skyline S@me real-world team, aiming at outperforming other gamers
tuple problem which has been extensively investigated, tfR2MS- They select teams, which are of equal size, based on

skyline group problem surprisingly has not been studied pyediction of player performance. The teams are compared
prior work. In this problem, we refer to any subsetiofuples by aggregated performance of the athletes in real games. For

in the table as a-tuple group Our objective is to find, for gxample, consider a table of the pool of availqble NBA player
a givenk, all k-tuple skyline groups, i.e4-tuple groups that ' @ basketball fantasy game. Each player is represented as
are notdominatedby any otherk-tuple groups. a tuple consisting of several statistical categories: fsojrer

The notion of dominance between groups is analogous $8M€: rebounds per game, assists per game, etc. The strength
the dominance relation between tuples in skyline analysf. & téam is thus captured by the corresponding aggregates
The dominance relation between two groupskotuples is of these statistics. Other motivating examples include the
defined by comparing their aggregates. To be more specifi@Plications where the need for choosing groups arises, suc
we calculate for each group a single aggregate tuple, whé&e expert finding and crowdsourcmg. Consider the task of
attribute values are aggregated over the correspondiriigLeét choosing a panel of a certain number of experts to evaluate
values of the tuples in the group. The groups are théh'éSearch paper or a grant proposal. An expert can be
compared by their aggregate tuples using traditional tUFﬂréodeled as a tup_le in the multi- dlmen5|9nal space defined
dominance. While many aggregate functions can be considef the Paper’s topics, to reflect the expert's strength osehe
in calculating aggregate tuples, we focus on three distimat- {©OPICS. The collective expertise of a panel is modeled as the

tions that are commonly used in database applications—s\#ggregate of the corresponding tuples. The goal is to select
panels attaining strong aggregates. Similarly the probdém

e N. Zhang and S. Rajasekaran are with the Department of Cumputformmg cqllaboratlve t,eams for software developmentemtq
Science, George Washington University. can be viewed as finding groups of programmers whose
E-m_ailr nzhangloe@gwuedu, stén?]arCS@gwmail-g\?/gedu e and corresponding tuples are strong in the multi-dimensiopate

e C.Li, N. Hassan, G. Das are with the Department of Comput e an f ; R ;

Engineering, The University of Texas at Arlington, Arliogt TX 76019. of desired skills for the project. Th|s_ can be extended to the
G. Das is also with Qatar Computing Research Institute. more general context of crowdsourcing tasks to users.
E-mail: cli@uta.edu, naeemul.hassan@mavs.uta.edu, @dies edu The capability of recommending groups is valuable in

the above-mentioned applications. An attractive propefty

skyline groups is that a skyline group cannot be dominated typles, then we can safely excluddrom the input without
any other group. In contrast, given a non-skyline groupreheinfluencing the distinct aggregate tuples found at the erel. W
always exists a better group in the skyline. Hence the s&ylialso find that, for MAX, we can safely exclude any non-skyline
groups present those groups that are worth recommendingle without influencing the results.
They become the input to further process that ultimately Our final ideas (perhaps, technically the most sophisticate
recommends one group. of the paper) are on search space pruning. Instead of entimera
Recommending a few groups becomes non-trivial wheng everyk-tuple combination, we exclude from consideration
there are many skyline groups. In addition to eyeballinmany combinations. To enable such candidate pruning, we
skyline groups by browsing and visualization interfaceshsu identify two properties inspired by the anti-monotonicpecty
post-processing can also be automatic. One approach isirtothe well-known Apriori algorithm for frequent itemset
filter and rank skyline groups according to user preferenamining [1]. It is important to emphasize here that the anti-
For instance, if groups are ranked bynzonotonicscoring monotonic property in Apriordoes not holdor skyline groups
function on attributesd,, ..., A,,, regardless of the specificdefined by SUM, MIN or MAX. More specifically, a subset
scoring function, the skyline always contains a group aittgi of a skyline group may not necessarily be a skyline group
the best score. Another automatic approach is to returnitgelf. We identify two anti-monotonic properties with dif
small number of representative skyline groups, by criterfarent applicability—while théDrder-Specific Anti-Monotonic
proposed for skyline tuples [7], [18], [27], [6], since eachProperty (OSM) applies to SUM, MIN and MAX, thé&Veak
group corresponds to an aggregate tuple. We do not furtli@gandidate-Generation Propertfft’tCM) applies to MIN and
investigate such post-processing in this paper. In Se@ionMAX but not SUM. We develop a dynamic programming
we provide a more detailed discussion of previous work aigorithm and an iterative algorithm to compute skylineugro
choosing from a large number skyline tuples. s, based on OSM and WCM, respectively. Our algorithms
To find k-tuple skyline groups in a table of tuples, there iteratively generate larger candidate groups from smaihers
can be (Z) different candidate group$iow do we compute and prune candidate groups by these properties.

the skyline groups of tuples each from all possible groups? \we briefly summarize our contributions as follows.
Interestingly, the §kyllne group problem is significantliet- We motivate and formulate the novel problem of com-
ent from the traditional skyline tuple problem, to the exten puting skyline groups, and discuss the inapplicability of

th‘f a_Igor||thmT {_or thetla:cc_artalretqlrlie inapplicable. te th traditional skyline tuple algorithms in solving this preih.
simple solution is to first list al(};) groups, compute the e \We develop novel algorithmic techniques for output com-

agg_regate tuple for each group, and then use any traditionaf)ression, input pruning, and search space pruning. Incparti
skyline tuple algorithm to identify the skyline groups. The ular, for search space pruning, we identify interesting-ant

ma_lin problem with such an approach _is the_ Signiﬁc."’mt_compu'monotonic properties to filter out candidate groups.
tational and storage overhead in creating this huge inteiate « We run comprehensive experiments on real and synthetic

input for the traditional skyline tuple algorithm (i.e0((})) datasets to evaluate the proposed algorithms.
aggregate tuples). The skyline group problem also has anoth

idiosyncrasy that is not shared by the skyline tuple problem
For certain aggregate functions, specifically MAX and MINé RELATED WORK
even the output size—i.e., the number of skyline groups-Skyline query has been intensively studied over the last
while significantly smaller tha{}), may be nevertheless toodecade. Kung et al. [13] first proposed in-memory algorithms
large to explicitly compute. To address these two problemes, to tackle the skyline problem. Borzsonyi et al. [5] was the
develop novel techniques, namebytput compressigrninput original work that studied how to process skyline queries in
pruning, andsearch space pruning database systems. Since then, this line of research irclude
For MAX and MIN aggregates, we observe that numeroysoposals of improved algorithms [10], [12], progressikg-s
groups may share the same aggregate tuple. Our approacling® computation [26], [14], [21], query optimization [&nd
compressing the output is to list the distinct aggregatéesyp the investigation of many variants of skyline queries [230],
each representing possibly many skyline groups, and aldd], [22], [19], [11], [16], [24], [9], [29], [4].
provide enough additional information so that actual sig/li ~ With regard to the concept of skyline groups, the most
groups can be reconstructed if required. Interestingbrehs related previous works are [3] and [31]. In [3] the groups
a difference between MIN and MAX in this regard: while thare defined by GROUP BY in SQL, while the groups in our
compression for MIN is relatively efficient, the compressiowork are formed by combinations @f tuples in a tuple set.
for MAX requires solving the NP-Hard Set Cover ProblenZhang et al. [31] studied set preferences where the preferen
(which fortunately is not a real issue in practice, as welshaélationships betweeksubsets of tuples are based on features
show in the paper). Note that both output compression and thie k-subsets. The features are more general than numeric
aforementioned post-processing are for tackling larg@wut aggregate functions considered in our work. The preference
Output compression is incorporated into the process ofrfffpdigiven on each individual feature form a partial order over
skyline groups and is performed before post-processing. the k-subsets instead of a total order by numeric values.
Our approach to input pruning is to filter input tuples an@heir general framework can model many different queries,
significantly reduce the input size to the search of skylinacluding our skyline group problem. The optimization tech
groups. The idea is that if a tupteés dominated by: or more niques for that framework, namely treuperpreferenceand

M-relation ideas, when instantiated for our specific problem, i a tuple withm attributes{4,,.. ., Am}
. . . N . D a database table of tuples{t:,...,tn}

are essentially equivalent to input pruning in our solutam e ...t} C D, ak-tuple group

well as merging identical tuples. Hence such an instanfiati T ¢ dominatesty

is a baseline solution to our problem. However, the impdrtan v an aggregate vector

search space pruning properties (OSM and WCM) and output| 7(G) | aggregate vector of grou@’ under function”
compression in Section 4 are specific to our problem and were| » | the firstn tuples _
not studied before. These ideas bring substantial perfocema Sky, | all k-tuple skyline groups irY;,

. . . Lo . Skyy all k-tuple skyline groups D
improvement, as the comparison with the baseline in Seétion OSM | order-specific property

shal! demonstrate.) WCM | weak candidate-generation property
With regard to the problem of forming expert teams to solve)
TABLE 1: Notations

tasks, the most related prior works are [15] and [2]. In [2]
teams are ranked by a scoring function, while in our case
groups are com_pared by skylm_e-based dommar_lce relatl(\)/g'c:tor with thei-th element being an aggregate valueAf
Hence the techniques proposed in [2] are not applicablerto qu . : ; -
. .) ver all k& tuples in the group. While this definition allows

setting. In [15], instead of measuring how well teams matc .

o . eneral aggregate functions, we focus on three commonty use
tasks, the focus was on measuring if the members in a team ¢an

. . o unctions—SUM (i.e, AVG, since groups are of equal size),
effectlvel_y collaborate with each other, based on inforomat MIN, and MAX. Functions such as MEDIAN and VARIANCE
from social networks.

A large number of skyline points may exist in a givearﬁ; not satisfy the properties in Section 4 and thus do not

dataset. due t : h hiah di : end themselves to efficient algorithms proposed in the pape
ataset, due 1o various reasons such as nigh dimensionagy, aggregate vectors for two groups are compared according
Such large size of skyline hinders the usefulness of skyIng

¢ q R h h ticed this i q the traditional tuple dominance relation which is defined
O €nd users. kesearchers nave notice IS 1SSueé and v, Eording to certain application-specific preferenceschSu
ous approaches are proposed to alleviate the problem.

RN : C i P&ferences are captured as a combination of total ordeadl fo
direction is to perform skyline analysis in subspaces atbte

o JCeme T attributes, where each total order is defined over (all jpdessi
of the original full space [23], [28). Another direction i t alues of) an attribute, with “larger” values preferred ove

choose a small number of representative skyline points. T, € aller” values. Hence. an aggregate veatodominates;
. 3y 2

;emanucs anq methods proposed in various works on tﬂ'%nd only if every attribute value af; is larger than or equal
line can be directly adopted for post-processing when there

. . §C the corresponding value ef, according to the preference
are many skyline groups, since each group corresponds to
aggregate tuple. Specifically, Chan et al. [7] propose tornet

only frequent points and they measure the frequency of & poin

o?der andv, is larger tharw, on at least one attribute.

by how often it is in the skyline of different subspaces. Lin e O tuple
al. [18] selectk most representative points such that the total A1 A ,

. t1 3 0 X MAX skyline
number of data points dominated by theoints is maximized. tr | 0 3 aggr vector
Tao et al. [27] define representative skyline points diffeise ts | 2 1 [MIN skyline
aiming at minimizing the maximal distance between non- ¢, | 2 2 aggr vector
representative skyline points and their closest repratieas. ts | 0 2

Chan et al. [6] defing-dominant skyline as the points that are) _ N . .
not dominated by any other points in alattribute subspace. -Ie-':\aBrhEIez. Running Fig. 1: Running example in 2-d space

Tuples SUM MAX MIN
3 SKYLINE GROUP PROBLEM G0 LR LR @6 23 (0.1
In this section we formulate the skyline group problem. &bl G [t3(2,1) t4(2,2) t5(0,2)| (4,5) (2,2) (0,1)
lists the major notations used in the paper. Consider a datab . .
table D of n tuplesty,...,t, andm attributesA,, ..., A,,. Dominance Relation G~ G' G > G G=¢
We refer to any subset of tuples in the table, i.e.¢ : TABLE 3: Examples of aggregate-based comparison
{ti1,...,tir} C D, as ak-tuple group Our objective is to find
the skyline ofk-tuple groups. Whether/etuple group belongs Table 2 depicts a 5-tuple, 2-attribute table which we shall
to the skyline or not is determined by the dominance relatiarse as a running example. Figure 1 depicts the tuples on a 2-
between this group and othértuple groups. The dominancedimensional plane defined by the two attributes. We consider
test, when taking two grouggs,; andGs as input, produces onethe natural order of real numbers as the preference order. Fo
of three possible outputs&; dominatesG,, G, dominates instance,t, dominatests while neithert, nor t3 dominates
(1, or neither dominates the other.kAtuple group is akyline each other. Table 3 shows a sample case of comparing two
k-tuple group or skyline groupin short, if and only if it is not 3-tuple groups for each aggregate function. Figure 1 also
dominated by any othét-tuple group inD. Note that a tuple shows the symbols corresponding to MIN and MAX aggregate
t; may be in multiple skyline groups. vectors of skyline 2-tuple groups in the running example. Fo
Groups are compared by their aggregates. Each grougnistance, the skyline 2-tuple group under MAX function is
associated with amggregate vectori.e., anm-dimensional {t¢,t>}, with aggregate vectof3, 3). The aggregate vectors

of skyline 2-tuple groups under MIN aré& 1) (for group particular, we shall describe two main ideas. Onenigut

{ts, t4}) and(0,2) (for groups{ta,ts}, {ta,t5}, {ta,t5}). pruning—filtering the input tuples to significantly reduce the
Our methods allow a mixture of different aggregate funénput size to the search of skyline groups. The otheseiarch

tions on different attributes. For example, if we use SUM ospace pruning-instead of enumerating each and eviertuple

the first attribute and MAX on the second attribute, then famombination, we develop techniques to quickly exclude from

the two groups in Table 3, the aggregated vector&:fandG’ consideration a large number of combinations. Note that the

are (4, 3) and (4, 2), respectively. Our order-specific propertytwo types of pruning techniques are transparent to eactr othe

(Section 4.3.1) can handle arbitrary mixture of SUM, MINand therefore can be readily integrated.

and MAX, while the weak candidate-generation property {Se .

tion 4.3.2) handles any mixture of MIN and MAX. Section -1 Output Compression for MIN and MAX

presents the experimental results on such mixed functions.Main Idea: A key observation driving our design of output
compression is that while the number of skyline groups may

be large, many of them share the same aggregate vector. Thus,

4 FINDING SKYLINE GROUPS -)) :
our main idea for compressing skyline groups is to store not

In this section, we develqp our main ideas for finding skyliqg|| skyline groups, but only the (much fewer) distinct skyli
groups. We start by considering a brute-force approachh/vh|'1s:(ggregate vectors (in shoskyline vector as well as one
first enumerates each possible combinationkofuples in skyline group for each skyline vector.

the input table, computes the aggregate vector for each COMAmMong the three aggregate functions we consider in the

bination, and then invokes a traditional skyline-tuplersé paper, SUM rarely, if ever, requires output compressiore Th
algorithm to find all skyline groups. This approach has Wy itive reason is that, for any attribute, the SUM aggtega
main problems. One is its significant computational ovethegy 5 skyline group is sensitive to all tuples in the group,
as the input size to the final step, i.e., skyline tuple sgdsch,ile MIN (resp. MAX) aggregate is in general only sensitive
(+), which can be extremely large. to tuples with minimum (resp. maximum) values on certain
~ The other problem is on the seemingly natural strategy gfyrihutes, making it much more likely for two groups to shar
Ilstlng all skyline groups as the output. For certain agetey the same MIN (resp. MAX) vector. In the rest of the paper,
functions (e.g., MAX and MIN), even the output size, i.eye shall focus on finding all skyling-tuple groups for SUM,
the number of skyline groups produced, may be neverthelegs; finding all distinct skyline vectors and their accompagy
too large to explicitly compute and store. Consider an exére (sample) skyline groups for MIN and MAX. We use the term
example under MAX. If a tuplé dominates all other tuples,uSky“ne search” to refer to the process in solving the peotol

then everyk-tuple combination that contains is a MAX Reconstructing all Skyline Groups for a Skyline Vector:

skyline group—Ileading to a total @d(n*~!) skyline groups. X 2 . . .
Such a large output size not only leads to significant ovethe hile the d's.t'nCt skyline vectors_ anq their accompanying
sample) skyline groups may suffice in many cases, a user

in computing skyline groups, but also makes IOOSt-prOCgSSImay be willing to spend time on investigating all groups

(e.g., ranking and browsing of skyline groups) costly. : . .
Another idea is to consider skyline tuples only. While Seerﬁ_quwalent 0 a partl_cular skyline ‘vector, and to choose a
group after factoring in her knowledge and preference. Thus

ingly intuitive, this idea will not work correctly in gendrdn e now discuss how one can reconstruct the skvline arouns
particular, we have the following two observations: w W discu W : U SKyline group
corresponding to a given skyline vector, if required.

1) A group solely consisting of skyline tuples mawt be consider MIN first. For a given MIN skyline vectar, the
a skyline group. Conside®={t,?,} in the running example. process is as simple as findifiv), the set of all input tuples
Note that botht; andt, are skyline tuples. Nonetheless, undefhich dominate or are equal ta The reason is as follows.
SUM, G is dominated byG'={t3,4}, as SUMG)=(3,3) Given anyk-tuple subset of}(v), its aggregate vectar must
while SUM(G")=(4,3). As such,G is not on the skyline. be equal ta, because (1)’ cannot dominate (otherwisev is
2) A group containing non-skyline tuples could be a skylineot a skyline vector) and (2 does not contain smaller value
group. Again consider the running example, this time witthanv on any attribute, by definition of2(v). On the other
G = {t4,t5} and MIN function. Note thats is not on the hand, if a group contains a tuple outsideftfv), its aggregate
skyline as it is dominated by, andt¢,. Nonetheless(z (with vector must have smaller values thaon some attributes, and
MIN (G) = (0,2)) is actually on the skyline, because the onlyherefore cannot be in the skyline. The time complexity of a
other groups which can reach, > 2 in the aggregate vector linear scan in finding(v) is O(n). Given Q(v), the only
are {t2,t4} and {t2, 5}, both of which yield an aggregateadditional step is to enumerate &Htuple subsets of)(v).
vector of (0,2), the same as MINZ). Thus, G is on the For MAX, interestingly, the problem is much harder. To
skyline despite containing a non-skyline tuple. understand why, consider each tuple as a set consisting of
To address these challenges, we develop several techniga#ésattributes for which the tuple reaches the same value as
namelyoutput compressigrinput pruning andsearch space a MAX skyline vector. The problem is now transformed to
pruning We start with developing amutput compression finding all combination of: tuples such that the union of their
technique that significantly reduces the output size when tborresponding sets is the universal set of all attributee——i
number of skyline groups is large, thereby enabling more effinding all set covers of siz&. For instance, in finding the-
cient downstream processes that consume the skyline groupple skyline groups for a skyline vectoe=(4, 5, 6), consider
Then, we consider how to efficiently find skyline groups. Itwo tuplest;=(3, 5, 2) andto=(4,1,6). The setfor; is { A2},

becausé; has the same value ason attributeA,. Similarly aggregate vector (becauékis a skyline group). Ift'eG, we
the set fort, is {A1, As}. Since the union of the two sets iscan remove: from G without changing the aggregate vector
{A1, Az, A3}, the two tuples together is a set cover of sizef GG. In either way,t can be safely excluded from the input.
2. The NP-hardness of this problem directly follows from th8y repeatedly replacing or removing non-skyline tupleshia t
NP-completeness of SET-COVER, seemingly indicating thabove way, we will obtain a group of size at mdstthat
MAX skyline groups should not be compressed. is formed solely by skyline tuplé’sPadding the group with
Fortunately, despite of the theoretical intractabilitpding arbitrary additional tuples to reach sikzewill result in a group
all skyline groups matching a MAX skyline vectoris usually of the same aggregate vector @s
efficient in practice. This is mainly because the number of

tuples that “hit” the MAX attribute values iw is typlcally 4.3 Search Space Pruning: Anti_Monotonicity
small. As such, even a brute-force enumeration can be e

cient, as demonstrated by experimental results in Sectjonl(n%Jr principal |de_a for sea_rch space pruning IS to find and
Nonetheless, when a large number of tuples “hit” the MAngerage tvx_/oantl-monotomc prop_ert_lesfor §kyI|ne search,
attribute values, it is unclear how one can efficiently ﬁnaomewhat_ n analogy to the Aprl_or_| a}lgorlthm for frequent
and store all skyline groups - e.g., by using certain efficie emsgt.mlmng_[l]. Noneltheless, It IS |mp9rt§mt to notettha
indexing schemes. We leave the design of such indexi original anp-monotomc property in Apnon—eyerysam
schemes as an open problem for future research. of a group “of interest” (e.g., a group of frequent items) mus

Before algorithmic discussions, we make an important 08150 be *of interest” itseli—does not hold for skylme s_eharc
servation for the case of MAX whek > m, wherek is Vel SUM, MIN or MAX. In fact, two examples in Section 3

the size of a skyline group and is the number of attributes. can serve as proof by (?ontrad|ct|on, for SUM and .MlN'
Since it takes at most tuples to cover the MAX values of all Specmcally, for SUM, §kyl|n@—tuple group{t37 ta} contains
attributes, there is only one distinct skyline vector—tleetor a non-skyline tuples, i.e., a non-skylind-tuple group. For

that takes the MAX value on every attribute. In reconstngti EAIN’I\TB/(IM; gr_oup{tﬁ, t%}_»l_::ontaini a non_;skygne tuzla}.
skyline groups, for each skyline group, after finding tuilest or , the ihapplicabllity can be easily observed from
he fact that the set of all tuples is always a skylin¢uple

cover the MAX values, the remaining tuples can be arbitrary.) : . ,
roup, while many subsets of it are not on their correspandin

4.2 Input Pruning skylines of equal group size. Thus, the key challenge is to

We now consider the pruning of input to skyline grou;g\r;d anti-monotonic properties that hold for skyline search

searches, which is originally the set of all tuples. An e stress thaf[the main contribut_ion_ here is _not apoaving
important observation is that if a tuptes dominated byt or these pro_pert|es, but rather abdirtding the right ones that
more tuples in the original table, then we can safely excludé&a" effectively prune the search space.
from the input without influencing the distinct skyline vert e . .
found at the end. To understand why, suppose that a skyl#fg'l Order-Specific Anti-Monotonic Property
groupG contains a tuple that is dominated by (h>k) tuples. Our first idea is to make a revision to the classic property in
There is always an input tupté that dominates and is not in the Apriori algorithm, by factoring in an order of all tuple&
G. Sincet’ dominates, there must be less thantuples that understand how, consider aggregate function SUM and a sky-
dominatet’. Note that if#’ is still dominated byk or more line k-tuple groupGy, which violates the Apriori property, i.e.,
tuples, we can repeat this process until findingG that is @ (k—1)-tuple subset of it(+x_, CGY, is not a skyline k—1)-
dominated by less thantuples. Now consider the constructiorfuple group. We note for this case that al-(1)-tuple groups
of another group’’ by replacingt in G with ¢'. For SUM, Which dominateGi,_; must contain tuplé,=Gx\Gy—1. To
G’ always dominates;, contradicting our assumption that understand why, suppose that there exists-al{-tuple group
is a skyline group. Thus, no skyline group under SUM cafi’ Which dominatesG—; but does not contairt;. Then,
contain any tuple dominated by or more tuples. G’ U {t;} would always dominatex,=Gy—1 U {t;} under

For MIN and MAX, it is possible that the aggregate vector8UM, contradicting the skyline assumption f6f;. One can
of the aboveG’ and G are exactly the same. Even in thissee from this example that while a subset of a skyline group
case, we can still safely excludefrom the input without may not be on the skyline for the entire input table, it is
influencing the distinct skyline vectors. If other tuplegirare always a skyline group over a subset of the input table—in
dominated byk or more tuples, we can use the same proceBarticular,D\{¢,} in the above example. This observation can
to remove them and finally reach a group that (1) features the extended to MIN and MAX, with a small tweak. That is,
same aggregate vector &5 and (2) has no tuple dominateddlthoughG';_1 might be dominated by &:(-1)-tuple groupG’
by % or more other tuples. Thus, we can safely remove dPt containing/,, the aggregate vectors 6f U {t;} and G},
tuples with at least: dominators for SUM, MIN and MAX. Mmust be equal. Therefore, consideri@g and ignoringGy.—1

Another observation for input pruning is that, for MAXWiIll still lead us to the same skyline vector. If we require
only, we can safely exclude any non-skyline tuplgom the every subsets;_; of a skyline groupGy to be a skyline
input without influencing the skyline vectors. The reason is

as follows. Suppose a skyline groa}bcontains a non-skyline 1. Note that if the resulting group has size smaller thathen it (and thus
&) reaches the maximum values on all attributes. If there eneerf thank

H H H /
tuple ¢ that is d0m|nateq by a Skylme tupte. If ¢'¢G, the.n skyline tuples in the input, then we can immediately coneltitat any skyline
we can replace in G with ¢’ to achieve the same (skyline)k-tuple group must reach the maximum values on all attributes

group over tableD\{¢}, wheret,=G;\Gk—1, we will not skyline search. The main idea is that, instead of requiirggy
miss any skyline vector. This leads to the following propert (k — 1)-tuple subset of a skylink-tuple group to be a skyline

Definition 1 Order-Specific Property An aggregate function (k—1)-tuple group, we consider the following property which
F satisfies theorder-specific anti-monotonic properif vk, ©ONly requiresat least onesubset to be on the skyline.

given a skyling:-tuple groupG), with aggregate vectar (i.e., Definition 2 (Weak Candidate-Generation Property) An

v = F(Gy)), for each tuple in Gy, there must exist a set of aggregate functiodF satisfies theveak candidate-generation
(k — 1)-tuplesGr—1 C D with ¢t & Gi—1, such that (1)Gr_1 propertyif, Vk and for any aggregate vectoy, of a skyline

is a skyline(k — 1)-tuple group over an input tabl®\{¢}, k-tuple group, there must exist an aggregate vector, for
and (2)Gx—1 U{t} is a skylinek-tuple group over the original a skyline(k — 1)-tuple group, such that for any — 1)-tuple
input table D which satisfiesF(Gi—1 U {t}) = v. B group Gix—1 which reachesy,_; (i.e., F(Gx—1) = vik—_1),

It may be puzzling from the definition where the ordefh€reé must exist an input tuple ¢ Gj_1 which makes
comes from. We note that it actually lies in the way searchix—1 U {t} @ skyline k-tuple group that reaches; (i.e.,
space pruning can be done according to this property. Censid (Gr—1 U {t}) = vk). u
an arbitrary order of all tuples, sayi,...,t,). For any An intuitive way to understand the definition is to consider
r < n, if we know that anh-tuple groupG;, (h < r) is not the case where every skyline group has a distinct aggregate
a skyline group ovefty,...,t.}, then we can safely prunevector. In this case, the weak anti-monotonic property iold
from the search space atttuple groups whose intersectionwhen every skylinek-tuple group has at least oné—{1)-
with {t1,...,t.} is G,—a reduction of the search space siz&uple subset being a skyliné{1)-tuple group. The property
by O((n—r)*~"). The reason is that, if the aggregate functiois clearly “weaker” than the classic (Apriori) anti-monoto
satisfies the property in Definition 1, either (1) such groames property when being used for pruning, in the sense that it
not skylinek-tuple groups or (2) the aggregate vectors of suailows more candidate sets to be generated than directty (an
groups are unchanged if we replaGg by h-tuple groups that mistakenly) applying the classic property.
are subsets ofty,...,t.} and dominat&s;,. Such a pruning In general, this property avoids the pitfall of order-sfieci
technique considers all tuples in a specific order—hence theperty by removing the requirement of enumerating all
name of order-specific anti-monotonic property. tuples in order and generating skyline groups for each $ubse

Theorem 1 SUM, MIN and MAX satisfy the order-specific of tuples along the way. However, its limitation is that itlypn

aggregate vector (i.e., v = F(G)) andt € Gy. Consider 9eneration property. u
Gr-1 = Gp\{t}. (A) If Gi—_1 is a skyline £ — 1)-tuple group Proof: We prove the theorem for MAX. The proof for
over D\{t}, thenG_ itself satisfies the two conditions inMIN is similar. SupposeG) is a skyline k-tuple group
Definition 1; (B) Otherwise, by definition of skyline group,with F(Gy)=v,. Consider an arbitrary tuple, Gy, and the
there must exist a skylinek(— 1)-tuple group overD\{t}, correspondingi—1)-tuple subset of7y, G=G;\{t1}.
G’, such thatG’ > Gj_,. For SUM, only the above (A) is If G is a skyline ¢—1)-tuple group inD, then for any
possible, i.e.(;,—1 must be a skylinek—1)-tuple group over G’ (including G itself) such thatF(G’)=F(G), there are two
D\{t}. If (B) is possible, therG’U{t} - Gr_1U{t} = G}, by possible cases to consider: () G’ and (B)t;€G’. In Case
the concept of SUM, which contradicts with the assumptia@), F(G’' U {t1})=F (G U {t1})=F(Gk). In Case (B), note
thatGy, is ak-tuple skyline group. For MIN and MAX, for the that sinceG’ andG are of equal size, there must exist at least
above case (B), we prove th#(G' U {t})=F(G}), i.e., G’ one tuplet, € G andty ¢ G'. ConsiderG’ U {t5}. Since
satisfies both condition (1) and (2) in Definition 1. Accolint,eG and F(G')=F(G), we have thatF (G’ U {t2})=F (G U
to the semantics of MIN (MAX), ifG" - G—1, then either {¢,})=F(G). Furthermore, sinc& €G’, under MAX, F (G’ U
G'U{t} = Gr_1U{t} = G or G U{t} = Gr_1U{t} = Gr. {t2})=F(GU{t:})=F(Gy). If G is not a skyline k—1)-tuple
G’ U{t} = G} would contradict with the assumption th@, group in D, consider a skylinek—1)-group G” -~ G. The
is a skyline group. Therefor&’ U {t} = Gx_1 U {t} = G, same analysis above applies@ instead ofG.
and thus? (G’ U {t})=F(Gy). O In all cases, we always find a skyliné-{1)-tuple group
We note a limitation of the order-specific property. To prunand an extra tuple such that the aggregate vector of thesnuni
based on it, one has to compute for evéry[k,n — k] the equals the original; under MAX. Therefore MAX satisfies
aggregate vectors of skyline 1, 2,., min(k, h)-tuple groups the weak candidate-generation property in Definition 2]
over the firsth tuples (by the order), because any of the . .
groups may grow into a skyliné-tuple group when |atterS'Fheorem 3 SUM does not satisfy the weak candidate-
tuples (again, by the order) are brought into consideratio?\eneratlon property. u
Given a largen, the order-specific pruning process may incur We would like to note that while the only proof needed

a significant overhead, as we shall show in Section 6. here is one counter-example, our study showed that finding
_) such a counter-example is non-trivial. In particular, theak
4.3.2 Weak Candidate-Generation Property candidate-generation property indeed holds whet8, but

We now describe an order-free anti-monotonic property tvhidails whenk>4. For k=4, we constructed through MATLAB
“loosens” the classic Apriori property to one that holds foan 8-tuple, 69-attribute table as a counter-example, agrsho

ti: (-131,-40,-4,-4,-98,-20,4,4,-69,-49,-9,-49,-9,54,1%920,20,-107,-22,27,-22,27,61,-39,13,17,13,17188,12,89,59,82,35,29,29,46,51,40,51,40,55,27,
56,20,56,20,40,37,37,103,44,104,53,47,53,47,45863876,64,64,90,50,1D6

to: (-40,-79,-38,-38,-80,-66,-52,-52,-85,-59,-67,-59,-6%,14,-47,-15,-15,-56,0,-41,0,-41,1,-76,-18,-58,-52,-22,-63,-63,18,-52,3,-50,-32,-32,-60,-11,-
47,-11,-47,-26,-67,-34,-51,-34,-51,-38,-59,-59,-82,-18,-4,-32,-4,-32,-21,-17,-17,7,-27,-39,-39,-39,-31)

t3: (-49,50,-28,-28,51,33,10,10,64,15,35,15,35,20,-9)243,-44,39,-79,14,-79,14,-65,81,-22,28,-22,2858%8,-51,44,-63,15,-24,-24,62,-52,8,-52,8, -
31,57,-1,12,-1,12,-8,45,45,-7,19,6,-56,-8,-56,B,38-9,-68,-10,22,22,-30,5,25

ta: (15,-23,-34,-34,-9,-42,-49,-49,-15,-16,-39,-16,-89,-24,-58,-55,-55,13,-27,-47,-27,-47,-57,-28,-86,46,-54,-71,-29,-29,-48,-59,-67,-60,-57,-57 -
41,-52,-55,-52,-55,-59,-53,-62,-54,-62,-54,-61,-50,-68,-57,-75,-62,-63,-62,-63,-61,-63,-63,-63,-64,-64,- 72,-64,-70

ts: (67,39,75,-94,68,22,52,-62,58,145,57,-97,-32,-42239,-84,86,94,82,-106,-107,-58,50,111,47,-144,583130,-87,-77,-29,-42,-8,13,-54,8,51,28, -
129,-66,-41,7,39,20,-105,-33,-27,58,-75,-69,-22184.4,-95,-62,-32,51,-139,-61,-45,35,-89,-6 0, &5}, -

te: (67,39,-94,75,68,22,-62,52,58,-97,-32,145,57,-42,2234,39,86,-106,-107,94,82,-58,50,-144,-53,111507-87,130,-77,-29,-42,-8,-54,13,8,-129,-
66,51,28,-41,7,-105,-33,39,20,-27,-75,58,-69,-22;95,-62,18,14,-32,-139,51,-61,-45,-89,35,-6 0557,

tr: (94,-82,44,44,-25,-47,-3,-3,-83,12,-50,12,-50,-17,49D,56,56,-66,119,-40,119,-40,84,-122,46,-4648620,-86,-86,90,-75,72,-40,30,30,- 124,69, -
26,69,-26,38,-91,7,-22,7,-22,12,-71,-71,17,-3476¢5,70,-5,43,-13,-13,87,-5,-47,-47,38,-17)-54

tg: (-28,93,75,75,21,95,95,95,68,46,101,46,101,123,1%378,79,1,19,107,19,107,87,80,55,110,55,110,1 18Ukt ,136,52,112,91,91,97,69,112,69,112,
101,109,96,104,96,104,104,111,111,111,119,104,73%3007,93,100,100,77,119,114,114,101,115,130

TABLE 4: Counter-example for proving Theorem 3

Table 4. With this counter-examplgty, to,t3, ¢4} is a skyline By transitivity of dominance relationshig;y” = G. This also

group for SUM, whereas none ofti,ts,t3}, {t1,t2,t4}, contradicts withG' € Sky}'. HenceG € Sky;' . 0

{t1,t3,ta}, Or {t2,t3, 14} is on the 3-tuple skyline. Proposition 2 Under aggregate function SUM, given
GeSkyp, if t,e€G, thenG\{t, }€ Sky;~|. [

5 ALGORITHMS

5.1 Dynamic Programming Algorithm Based on Algorithm 1: sky_group(k, n): Dynamic programming

Order-Specific Property algorithm based on order-specific property

Consider an arbitrafyorder of then tuples in the input Input: n: input tuplesT,={t,...,tn}; k: group sizek <n
table, denoted by, ...,t,. Let T, be the set of the first Output: Skyj: skyline k-tuple groups among:,
r according to this order, i.eT,={t1,...,t,.}. Let Sky 1 if Skyy is computedthen
be set of all skylinek-tuple groups with regard td,, i.e., 2 | return Skyg;
each group inSky; is not dominated by any other-tuple ° if k== Lthen
< ; s | Sf e {{ta});
group consisting solely of tuples ii.. One can see that _ ,se
our original problem can be considered as findf¥y;;. We S« 0;
now develop a dynamic programming algorithm which finds Skyr~L « sky_group(k-1, n-1);
Skyy by recursively solving the “smaller” problems of findings foreach group G € Sky;~| do
Skyg_l and Skyl?:ll, etc. 9 candidate_group + G U {t,};
For ease of presentation, we assume aggregate function Sy <+ S5 U {candidate_group};

SUM in all the propositions, algorithms, and explanatioms #* f % < 7 then N _
this section. At the end of the section, we shall explain wi§ e||se5kyk (ie., 87) « sky_group(k, n-1);
the idea is also applicable for MIN and MAX. The algorithm, | S« 0;
is based on the following idea—All skylingé-tuple groups ;5 ¢y « sf U S5,
in Sky; can be partitioned into two disjoint sef§ and Sy 16 Skyp + skyline(Cy);
(Skyp = S U S, and S; N S = 0) according to whether 17 return Skyy;
a group containg,, or not. In particular,S; = {G|G €
Skyp, tn ¢ G} and Sy = {G|G € Sky}',t, € G}. One can We further explain the dynamic programming algorithm
see thatS; C Sky;~'. On the other handS, is subsumed by by referring to the outline in Algorithm 1. The idea is also
a set of groups that can be expanded fi§kw; |, the skyline illustrated in Figure 2. The functiorky_group(k,n) is for
(k-1)-tuple groups with regard td;,,. More specifically, finding Skyp. It first recursively computesSky)~| (Line
given a skylinek-tuple group that contains,, if we remove 7). By addingt, into each group inSky;'~{ (Line 8-10),
t, from it, then the resulting group belongs$@y;'~;. These the algorithm obtains a superset of the aforementiofigd
two properties are formally presented as follows. proofteNoaccording to Proposition 2. We denote this supefsgt By
that Proposition 2 can be directly derived from Theorem 1.recursively calling theky_group function (Line 12), it further
Proposition 1 Given GeSky2, if t,¢G, thenGeSky}fl.l computesS‘_ky}g_l, which |s a superset of the aforeme;ntioned

Proof: We prove this by contradiction. Assum@ ¢ Sﬁ' aci:ordlngfo Proposm(_)n L. We also dencﬁe_y}; by
Sky™~". Then, there must be krtuple groupG’ € Sky"~" S8 nand Sy thus contain all necessary candldaie gioups
such thatG’ »~ G. There are two possible cases. (&) € for ‘ikyk.' Thus,_the skyline over candidate grgu@v.@?l
Skyp: It contradicts withG € Skyp. (B) G' ¢ Sky;: There :k}‘?"?n’eL(;szrf;lésoﬁtﬁ;zn(tszd t[%]b([elg?u[ig?:zg n i)gssggl

1 1! n 1 / Y 1 1

must exist ak-tuple groupG™ & Skyj: such thatG - . over C}'. We useskyline() to refer to such algorithms (Line

: : +
2. We consider a random order in the experimental studiesleaé the 16)' The ngmber of candidate groups Con3|deté*g‘ (U SQ |) .
problem of finding an optimal order (in terms of efficiency)ftaure work. ~ can potentially be much smaller than the number of all pdessib

groups formed by all tuples, i.e(}).

Note that Sky; is needed in calculating bOtB’kyZH
andSky,ZLl. The algorithm recursively callgcy_group(k,n)
inside sky_group (k,n+1), to compute and memoiz&ky;..
Later it calls sky_group(k,n) again insidesky_group(k +

statement can be made for MIN and MAX—Given a skyline
k-tuple groupG), and anyi, there exists at least a skylirie
tuple groupG; that, when padded with othér: tuples, will
result in a skyling:-tuple groupG), such thatF' (G})=F (G).
Furthermore, given any skylingétuple groupG; such that

1,n+1). This time Sky} is not recomputed. Instead, theF(G;)=F(G;), we can padZ; with k—i other tuples to get
stored result is directly used (Line 1). Hence it is a dynami skyline k-tuple group that has the same aggregate vector

programming algorithm. The sequence of calculativgy):,

as G. Therefore, although Algorithm 2 does not produce all

... Sky} is shown by the dashed directed lines in Figure 2(b§kyline groups, it guarantees to find all distinct skylinetees.

Fig. 2: (a) CalculateSky from Skyp~! and Sky;~'; (b)
Dynamic programming algorithm for calculatirtgfy;’

Our discussion in this section so far assumed SUM. Fér
MIN and MAX, Proposition 2 requires a small modification,s
10 | G+ GuU{t};

as shown in the following Proposition 3.

Proposition 3 Under aggregate function MIN and MAX, giv—ﬁ |

enGeSkyy, if t,€G, then there exists a grou@ € Sky}jjll
such thatF (G’ U {t,})=F(G). [|

Algorithm 2: sky_group(k, n): Iterative algorithm based
on weak candidate-generation property

Input: n: input tuplesT,,={t1,...,t,}; k: group sizek < n
Output: Skys: skyline k-tuple groups among’,

Cl — Tn;
Skyr + skyline(Ch);
for i + 2 to k do
/lgenerate candidatetuple groupsC; from skyline
i—1-tuple groupsSky;_1.
5 Ci + 0;
6 foreach G € Sky;—1 do
foreach t € T;, do
/lgenerate candidate group
if t ¢ G then

AW N P

if G' ¢ C; then
Ci; +— C; U {Gl};

13 /lgenerate skyling-tuple groupsSky; based on candidates

C.

The implication of the applicability of Proposition 3 (iestd 14
of Proposition 2) for MIN and MAX is that, if we still apply °

Sky; < skyline(C5);
return Skyy.

Algorithm 1, theS; produced by Line 8-10 is not guaranteed o o N

to be a superset of the aforementiorfiadIn other words, Line On F_eaS|b|I|ty of Qombmlng Qrder-Spemﬁc and _Weak

16, which applies the skyline operation over candidate gspu Candidate-Generation Properties The order-specific and
cannot guarantee to producs:y?. However, the algorithm Weak_cand|date-gene_rat|0n properties cannot be meaﬂimgfu_
can still guarantee that the result of it contains all dtincombined. The candidate and skyline groups generated in
aggregate vectors irfky?, based on Proposition 3. NoteAIgonthm 2 are with respect to. alh tuples, fqr different _
that our goal is to find all distinct skyline vectors and theroup sizek. However, the candidate and skyline groups in
accompanying (sample) skyline groups for MIN and MAXAlgorithm 1 are with respect to the first (i=1..n) tuples

Hence the algorithm suffices for our goal without change. by a particular order. The combination is possible at the las
step of Algorithm 1. We can take the intersection @f

5.2 lterative Algorithm Based on Weak from Algorithm 1 andCj, from Algorithm 2 and then invoke
Candidate-Generation Property skyline(C}' N Cy). Even for this last step, the cost saving in

The weak candidate-generation property (Definition 2) cdifv/ine() due to less candidates may not make up for the
be summarized as follows. Consider the scenario when ev&Xjra cost in producing both candidate s€fs and Cj.
skyline group has a distinct aggregate vector. Given ais&yliComplexity Analysis: The worst-case complexity of both
groupG and anyi, at least oné-tuple sub-group ofs must be Algorithms 1 and 2 isO((Z)), which is as poor as the com-
a skylinei-tuple group. Based on this property, Algorithm Zlexity of the brute-force approach of enumerating all aes
iteratively generates candidatduple groups by adding new groups as candidates. We note that similarly the worst-case
tuples into skyline{— 1)-tuple groups (Line 6-12) and appliescomplexity of frequent itemset mining algorithms [1] is@ls
skyline algorithm over these candidates to find skylifteple exponential and equally poor as that of a brute-force ambroa
groups (Line 14). At every step of iteration, the algorithnfror both problems, it is the characteristics of real dasakheit
only needs to generatetuple candidates by extending skylineenables the algorithms to prune many candidates and thus to
(¢« — 1)-tuple groups instead of alt 1)-tuple groups. Hence achieve better efficiency in reality. Specifically, one cae s
it effectively prunes candidate groups by generation. from Algorithms 1 and 2 that a critical factor determining th

In reality, multiple skyline groups can have the same aggraverage-case complexity of these algorithms is the number
gate vector. The aforementioned statement is not true arggmaf unique i-tuple skyline vectors in g-tuple subset of the
That is, given a skyline grougs and anys, it is possible database (wheré € [1,k] andj € [1,n]) - which in turn
that none of itsi-tuple sub-groups is a skylinetuple group. depends on the underlying data distribution. For exampke, t
However, by Definition 2 and Theorem 2, a slightly differenbumber of unique skyline vectors tends to be small when

values of different attributes are positively correlatédthe Algorithm 3: Finding skyline groups with identical aggre-
extreme-case scenario where all attributes share the samated vectors (MIN function)

value, the number of unique skyline vector is always 1 for all'|npyt: input tuplesR; k: group sizek < R|

1 andj. On the other hand, there tends to be a large number oOutput: Sky: skyline k-tuple groups forR

unique skyline vectors when the attributes are indepeident g, . ¢

distributed. We shall evaluate the efficiency of Algorithths 2 T < removek-dominator tuples fronRg;

and 2 over real-world datasets in the experiments section. 3 n < [T'|; /* number the tuples il asty, ..., tn */

5.3 From Distinct Vectors to Equivalent Groups 4 Skyy < sky_group(k, n); I* Algorithm 1 or Algorithm 2 */

For MIN and MAX, even the output size - i.e., the numbesp foreach skylinek-tuple groupG € Sky;, do
of skyline groups produced - may be too large to explicitly | ¢ « the set of tuples in? that dominate or are
. . . equivalent to the aggregated vector®@f
compute gnd store. As discussed in Section 4.1, for_ OUPUt | ¢ teach k-combinationd’ of tuples inRe do
compression, we onIy.n(_eed to retain one representative sky- | Sky « Sky U {G'};
line group for each distinct aggregated vector. To be mogereturn Sky;
specific, it is sufficient forSky;r in Algorithm 1 and Sky;,
in Algorithm 2 to contain one representative group for each
distinct aggregated vector d@ftuple groups. It can be easily Algorithm 4: Finding skyline groups with identical aggre-
achieved by a simple modification of the skyline algorithm atgated vectors (MAX function)
Line 16 of Algorithm 1 and Line 14 of Algorithm 2. Whenever Input: input tuplesR; k: group sizejk < |R|
a candidate group is compared with current groups in theOutput: Sky: skyline k-tuple groups amongz
skyline, we prune it if it is equivalent to some existing gpou 1 Sky « 0;
This will further reduce the size of candidate groups and theeT < removek-dominator tuples from;
number of group comparisons in succeeding iterations. 2 7 ¢ |T; /* number the tuples i asts, ..., tn */
For input pruning, in the case of SUM and MIN, we remove Skyk < sky_group(k, n); /* Algorithm 1 or Algorithm 2 */
all tuples dominated by at leadt others. In the case of s foreach skylinek-tuple groupG € Sky; do
MAX, we remove all tuples not on the skyline. We showed i v + the aggregated vector ¢f
Section 4.2 that such input pruning techniques are safe,- i.é ‘?‘mdi_date—g’"o“p =0
we will still obtain all distinct vectors and their represatives. s e b

. . . . - 1] « null;
As discussed in Section 4.1, although in many cases distipgct Z\,J\,[h%|e i Zuo do

vectors and their representative groups suffice, a user may
request all skyline groups equivalent to a particular agaed
vector, for applying further criteria in choosing a groum T
return such equivalent groups, various postprocessipg ste ig
required, due to output compression and input pruning.\Belo
we discuss such postprocessing for individual functions. 14
Note that the same Algorithm 1 and 2 work if we do nos
apply output compression and input pruning. However, evén
if our application is to ultimately find all skyline groups,is
still beneficial to apply these two techniques and use postpr
cessing steps to find all skyline groups. Output compressign
and input pruning together not only reduce the output siae, ko
also save computational cost by allowing the algorithmsetal d 2*
with smaller input and intermediate results. In Section 6 vgsé
present experimental results to compare the executiondfime
our methods with and without-dominator tuple pruning. The 4
results verify the benefit of applying this pruning techrd@qu
regardless of the ultimate output—representative groops
all distinct aggregated vectors or all skyline groups. 2

SUM: No postprocessing is necessary for SUM. First;-a 2; return S

/* Note that it is fine to select a tuple multiple times
because a tuple can get the same value as
multiple dimensions. */
candidate_group <+ candidate_group \ {p[i]};
pli] + get the next tuple ink that hasv’s value on
the sth dimension;
if p[¢] == null then ¢ + i—1; continue;
candidate_group < candidate_group U {p[i]};
if |candidate_group| > k then continueg
if i==d then
[* d is the number of dimensions. */
k' + k — |candidate_groupl;
if k'==0 then
| Sky < Sky U {candidate_group};
else
R’ + R\ candidate_group;
foreach k’-tuple combination?’ among the
tuples inR’ do
Sky < Sky U {candidate_group U
G’}

else
P41+ 1;
pli] < null;
Y,

dominator tuple cannot appear in any skyliréuple group, as
discussed in Section 4.2. Thus, input pruning will not tegg
postprocessing for SUM. Second, if the ultimate goal is to

fetch all skyline groups, output compression should not P@IN : Two factors contribute to the need for postprocessing.

applied, because there is no effective way of reconstrgctifilst: the pruned:-dominator tuples may appear in skyline

skyline groups from distinct aggregated vectors. In Line 1$/0UPS. Second, the aforementioned equivalent group ramov

of Algorithm 1, all skylinei-tuple groups should be retainedPerformed at Line 16 of Algorithm 1 and Line 14 of Algo-

without applying the aforementioned simple modificatioatth fithm 2 will only keep one representative for each distinct

removes equivalent groups. Note that SUM only satisfies tR@9regated vector. Note that both algorithms are appkcabl
to MIN since MIN satisfies both order-specific and weak

order-specific property. Thus, only Algorithm 1 applies.

10

candidate-generation properties. At the end of both alygms, The data generator allows us to produce datasets where the
we obtainSky:, which contains representatives of all distincattributes are correlated, independent, and anti-caeckldn
aggregated vectors, but not necessarily all skylinwple independent datasets, the attribute values of a tuple were
groups. To generate all skyline groups fréfky, for MIN, we generated by a uniform distribution. In correlated datgset
follow Algorithm 3. For each representative group, we finld ahttribute values were generated using normal distribstion
the tuples that dominate or are equal to its aggregated vectnti-correlated datasets were generated by a more complex
Any k—combination of these tuples is a skyliheguple group. procedure, which involves adding and subtracting values fr
This is based on the results from Section 4.1. otherwise uniformly distributed attribute values.
MAX: Algorithms 1 and 2 are both applicable to MAX. Aggregate Functions and Methods ComparedWe in-
Similar to MIN, MAX needs postprocessing due to both inputestigated the performance of the two algorithms discussed
pruning and output compression. We thus devise AlgorithmSkection 5, namely the algorithms based on order-specifig-pro
to produce all skyline groups from representative groups. erty (OSM) and weak candidate-generation property (WCM).

For each representative group that is found by Algo- We also compared these methods with the baseline method
rithms 1 and 2, Algorithm 4 uses a backtracking process (BASELINE), which is a direct adaptation of the general
find all skyline groups that are equivalent & Denote the framework in [31] for our skyline group problem. (The de-
aggregated vector faF asv. On each dimension, we maintaintailed discussion of [31] is in Section 2.) We executed these
a list of tuples fromR (all input tuples to be considered) thatmethods for the aggregate functions discussed in previous
attain v's value on that dimension. We use the backtrackirgections—SUM, MIN, and MAX.
algorithm to enumerate all possible groups of the tuplesifro Parameters We ran our experiments under combinations of
these lists, such that the groups have the same aggregatemiparameter values, which are number of tuples, i.e. séata
vectorv and have less than or equalkduples. If a group has size @) and number of tuples per group, i.e., group sizg (
less thank tuples, it means there can be some “free” tuples. Values Measured For each applicable combination of ag-
Any combination of other tuples will complement this grougregate function, method, and parameter values, we mehsure
to form a skylinek-tuple group (Line 25-27). the execution time needed to find all distinct aggregateovect

A special case for MAX function is when there is only onend their representative groups, as well as the time to find al
distinct aggregated vector, i.e., all skylihduple groups reach skyline groups. Besides execution time, we also measured th
the highest possible value on every dimension. In Algorgim total number of candidate groups generated and number of
and 2, whenever arn-tuple candidate groupi (< k) is pairwise group (aggregated vector) comparisons in thegsc
generated, we test if this group attains the highest passilblue to the iterative nature of OSM and WCM, they call
value on every attribute. If so, we have already found thibe basic skyline function multiple times. Hence, the total
aggregated vector for all skyline groups. Using that vectarumber of generated candidate groups is the cumulativs size
we either find one representative group or all skyline groupsf inputs to all skyline function invocations. Furthermore
by a backtracking process that is essentially the same @SM produces candidate groups by merging two disjoint
Algorithm 4. We omit the details. sets of smaller groups. Here input size was calculated as the

summation of the sizes of disjoint sets.
6 EXPERIMENTS

i . i k=2 | k=4 | k=6

The algorithms were implemented in+€. We executed all |" G [S[V] G STV G S [V
H H SUM 247|247 1654| 1654 6146 | 6146
e?<per|ments on a Dell PpwerEdge 2900 111 server running, \» [vin las 10t | 187] 141| ax 1022 | 1914] 436 | 1x 10 | 12816 870
Linux kernel 2.6.27-7, with dual quad-core Xeon 2.0GHz MAX 368| 220 147| 73 29M| 1
processors, 2x6MB cache, 8GB RAM, and three 250GB SATA SUM 219[219 1610[1610 74827482
. 4M | MIN |8x102|179|131|1x10%° | 2182| 461 |6x10%¢ | 17784|1148
HDs in RAIDS. MAX 396|274 164| 78 1M| 1
Datasets We collected 512 tuples of NBA players who SUM 221] 221 1374] 1374 5825 | 5825
played in the 2009 regular season [20]. The tuple of eacly M | MIN |2x10™| 186134 1107 2193 485 2x10%" | 163471002
player has 5 statistics (i.e., 5 attributes) that measuee t SOM >T01 210 30011300 YRR
player’s performance. The statistics are points per gafR&JP |10 M| MIN | 4x10'3 | 183| 133|4x 10%° | 2130| 450 | 1x 103° | 15442| 913
MAX 402| 224 968 | 63 08B| 1

rebounds per game (RPG), assists per game (APG), steals

per game (SPG), and blocks per game (BPG_)' _Players 6"ﬁ%&bLE 5: Number of all groups (G), skyline groups (S), distinct
groups of players are compared by these statistics and th&fiine group vectors (V), under various &, and functions. Corre-
aggregates. lated synthetic dataset. M: million, B: billion
Another dataset is a collection of 35000 tuples that remrtese))
stocks for all the publicly traded firms as of DecemBef?, 6-1 Study of Different Aggregate Functions
2009 in several international markets [25]. Each tuple hasSize of Output under Different Functions: Table 5 shows,
attributes, which are market capital (MC), stock price (SPfor different n, k£, and aggregate functions, the number of
interest coverage ratio (ICR) and net income (NI). All thell possible groups (G), the number of all skyline groups
values were converted to US dollars. (S), and the number of distinct aggregate vectors (V) for the
To study the scalability of our methods, we also experskyline groups. The table is for correlated synthetic detas
mented with synthetic datasets produced by the data generdthe observations made on the NBA dataset were similar.
in [5]. The datasets have 1 to 10 million tuples, on 5 attelsut It can be seen that G quickly becomes very large, which

11

1e+06

00000

10000

1000

Execution Time
Execution Time

Total Candidate Groups
Total Candidate,Groups

[N
=}
S

100 200 300 400 500
Number of Tuples

o LW

300
Number of Tuples

100 200 400

Number of Tuples per Group

Number of Tuples per Group

(&) n = 300 (b) k=3 (c) n = 300 (d)y k=3
Fig. 3: (a)-(b): Execution time (seconds, log scale) and (c)-(djnber of candidate groups (log scale), mixture of SUM/MAXXM

PPG | RBG | APG | SPG | BPG

G1 | Carmelo Anthony | Kobe Bryant Kevin Durant LeBron James | Dwyane Wade| 283.2 | 63.4 52.2 152 | 7.6

G2 | Andrew Bogut Marcus Camby | Monta Ellis Dwight Howard | Josh Smith 166.2 | 96.4 32.2 13.4 | 194

G3 | Trevor Ariza Monta Ellis Dwyane Wade | Dwight Howard | Josh Smith 202 72.6 43.2 16.6 | 14

G4 | Carlos Boozer Baron Davis LeBron James| Rajon Rondo Chris Paul 193.8 | 61.2 80.6 176 | 4.8

G5 | Andrew Bogut LeBron James | Chris Paul Dwight Howard | Jason Kidd 185.8 | 81 64 14 13.8

PPG:Point Per Game, RBG: ReBound per Game, APG: Assist ReeGBPG: Steal Per Game, BPG: Block Per Game
TABLE 6: Sample skyline groups from 512 players, 5 players per group

indicates that any exhaustive method will suffer due to tHeom the NBA dataset. We see the sample groups are formed
large space of possible answers. We want to point out that elite players with different strengths. For instance, i61
the number of skyline vectors (V) can be large (e.g., undekcellent in scoring (PPG), G2 excels in defense (RBG and
k=6). As discussed in Section 1, these distinct vectors beco®BBG), and G3 is a very balanced group that is strong on many
the input to further post-processing such as filtering, i@k aspects although not the best on any dimension.
and browsing. When a particular skyline vector is chosenComparison of Various Methods: Figure 4-6 show the
by a user, the corresponding equivalent skyline groups afgecution time and number of generated candidate groups, by
generated upon request. BASELINE/OSM/WCM under all applicable functions, over
Among the three functions, in general SUM has the largesie NBA dataset. Figure 7 further shows the number of pair-
number of skyline vectors and MAX results in the smallestise group (aggregate vector) comparisons performed Isgthe
output size (V). This is due to the intrinsic charactersticalgorithms under MIN and MAX. In sub-figure (a) and (c) of
of these functions. In computing the aggregate vector fortidese figures, we fix the size of datase} {o 300 tuples and
group, SUM reflects the strength of all group members on eaghry group size k). In sub-figure (b) and (d) of these figures,
dimension. Hence it is more difficult for a group to dominateve fix the group sizek=5 for SUM/MIN andk=3 for MAX)
or equal to another group on every dimension. In contragind vary dataset size. We observed that OSM/WCM performed
MIN (MAX) chooses the lowest (highest) value among grougubstantially (often orders of magnitude in execution jime
members on each dimension. Hence skyline groups are fornggditer than BASELINE. Without the properties, BASELINE
by relatively small number of extremal tuples. produced much more candidate groups than OSM/WCM and
On the other hand, if we compare the sizes of all skylinfus incurred much more pairwise group (aggregate vector)
groups including the equivalent ones, it is rare under SUM twmparisons inside skyline function invocations.
have multiple skyline groups sharing the same aggregate vecgffect of Input Pruning: Input pruning was applied in all
tor. MAX results in much more equivalent groups. Moreovefhe experiments for Figure 4-6. It had a good impact on the
under MAX, when group siz¢ is larger than or equal to the performance of all algorithms, since it significantly redde¢he
number of attributes5(for the datasets), all skyline groupssize of input. Table 7 shows that, in all considered cases on
have the same aggregate vector that attains the highe& Va|BA dataset, less than 100 tuples remained dftdpminator
on every attribute. tuple pruning was applied. Figure 8 shows that substantial
Dealing with a Mixture of Aggregate Functions: Our saving on execution time was achieved for all functions.
methods allow a mixture of different aggregate functions ap
plied on different attributes. OSM can handle arbitrary tonig s
of SUM, MIN, and MAX, while WCM can handle any mixture 200
of MIN and MAX. Figure 3 shows the execution time of OSM 43188
over the 5-attribute NBA dataset, for 3 different mixturds o 500
functions. For example, 3SUM means SUM function on the _ _
first 3 of the 5 attributes, and MIN and MAX on the remaining TABLE 7: Number of tuples dominated by k tuples in NBA
2 attributes. From Figure 3 we can see that SUM function is Search Space Pruning Power of OSM and WCM:
typically more expensive. This is because output compoassiFigure 5, 6 and 7 compare OSM and WCM, in terms of
has less effect on SUM, under which it is more difficult for &xecution time, number of candidate groups produced, and
group to dominate other groups. number of pairwise group (aggregate vector) comparisons
) incurred. We observed that, in terms of execution time, OSM
6.2 Experiments on NBA Dataset performed better than WCM on the NBA dataset under both
Sample Resultant Skyline Groups:Table 6 shows several MIN and MAX. Although WCM demonstrated better pruning
sample skyliné&-tuple groups under aggregate function SUMpower in most cases as it resulted in less candidate groups

k=5
37
a7
61
78
83

10000 BASELINE — mmm
1000 OSM gz
2 100
=
~ 10
2
§ 1
@ 01
w
0.01
0.001 — - -
1 3 5 7
Number of Tuples per Group
() n = 300
Fig.
10000 BASELINE
1000 OSM
2 100 wem
=
~ 10
=]
g 1
]
2 01
I} .
0.01
0.001 L . - -
1 3 5 7
Number of Tuples per Group
() n = 300

BASELINE
OsM

=
1)
1S3
S

100

10

Execution Time

200 300

100

400

BASELINE
OosM

500 1 3

5
Number of Tuples Number of Tuples per Group
(b) k=5 (c) n = 300

10000

1e+09

BASELINE « BASELINE
1000 OSM S le+08 OSM
g WCM & 2 1e+07
F 100 $1e+05
s Zi00000
3 10 ‘2 10000
< <
d 1 i % 1000
— . : & 100 . !
01 ¢ i : i T e :
100 200 300 400 500 1 3 5
Number of Tuples Number of Tuples per Group
(b) k=5 (c) n = 300

7

12

1e+08
—

BASELINE
OsM

1le+07

N
®
e
o
>

00000

Total Gandidate Groups

10000

500

200 300 400
Number of Tuples

d k=5

100

4: (a)-(b): Execution time (seconds, logarithmic scale) arje(d): number of candidate groups (logarithmic scale)MsU

"
1e+08 "BASELINE
OSM

wCMm

Total Candidate Groups
8
3
S
3

10000 |l #” L
1000 i L R
100 200 300 400 500
Number of Tuples
d k=5

Fig. 5: (a)-(b): Execution time (seconds, logarithmic scale) arje(d): number of candidate groups (logarithmic scale)NMI

100000

1

BASELINI
OS|

WCM &
0.1

Execution Time

1
Number of Tuples per Group

2

(8) n = 300
Fig.

Number of Tuples per Group

(a) n = 300

0.1

200 300

() k=3

1le+10

400
Number of Tuples

BASELINE
2 OSM
3 10000 wem
0]
E
£ 1000 |
3 |
2
5
O 100
E
5
e

=
S

2
Number of Tuples per Group

500 1 3

(c) n = 300

100000

BASELINE s
OSM

« 1le+09
s WCM
2 1e+08
<
§1e+o7
O 1e+06
El
5100000
10000 -
200 300

Number of Tuples

(b) k=5

BASELINE
OSM

WCM
10000

1000

Total Comparisons

100 . -
1 2 3
Number of Tuples per Group

(c) n = 300

10000
a
5
o
[}
2
& 1000
5
2
]
[$}
B
5
= L i ¢ -
100 -
100 200 300 400 500
Number of Tuples

6: (a)-(b): Execution time (seconds, logarithmic scale) ag)e(d): number of candidate groups (logarithmic scale), A

10000

Total Comparisons

300
Number of Tuples

200 400

k=3

Fig. 7: Number of pairwise group comparisons by different methadsMIN (a)-(b) and MAX (c)-(d)

10

With K-Dominator Pruning
ithout K-Dominator Pruning

With K-Dominator Pruning
Without K-Dominator Pruning

With K-Dominator Pruning
ithout K-Dominator Pruning

§1 5 5
£ = £ 01
01 001
100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
Number of Tuples Number of Tuples Number of Tuples
(@) SUM (b) MIN (c) MAX
Fig. 8: Effect of input pruning on OSMk = 3
= Pistinct Aggregated Vectors
?, 0.02 'All Skyline Groups
H . ?LOOlS
(Figures 5(c), 5(d), 6(c), and 6(d)), WCM required more E
A . . . R = 0.01
pairwise group comparisons than OSM (Figure 7). Hence it £ o o0s
lost in comparison with OSM. £,

1
Number of Tuples per Group

Fig. 9: Finding all skyline groups for MAX;n= 100, OSM

2 3 4

Effect of Output Compression: Figure 9 shows the cost
(in execution time) of post-processing for obtaining alflste
groups from distinct skyline vectors, on the NBA dataset, fo
n= 1_00, MAX fun_ctior_l, a_nd OSM algorithm. We can see tha§ 3 Experiments on Stock Dataset
in this configuration finding all skyline groups only doubled
the execution time. This verifies that, even though the mmbl We also experimented on the Stock dataset. As the behavior
of finding all skyline groups from distinct vectors is an NPef our algorithms on this dataset is mostly similar to that
hard problem, in practice it is usually efficient due to then the NBA dataset, we do not present extensive results.
small number of tuples that can “hit” MAX attribute valuesfFigure 10 shows the performance of OSM and WCM for
as explained in Section 4.1. Asincreases, naturally the costgroup sizek = 3 under various input sizes. It is observed
of post-processing will also increase. However, in reality that, although the stock dataset is much bigger than the NBA
may only need to produce the equivalent groups for a skylidataset, the execution time is still considerably smalisT&
vector chosen by the user, instead of for all skyline vectors

13

) o 0.65 WCM o
£ £ 06 £ 0.14
£ £ 055 e
8 § okt g
g g ot g 0o
X x M X
w u 0.3 w
035 | | 008y
0.2] | g i i 0.04 i
10000 15000 20000 25000 30000 10000 15000 20000 25000 30000 10000 15000 20000 25000 30000
Number of Tuples Number of Tuples Number of Tuples
(a) SUM (b) MIN (c) MAX

Fig. 10: Execution time (seconds, logarithmic scale) on stock @atas= 3

OSM ===
50 o
£ £15
=40 [e
8§30 . S10
5 5 5
n} _ w
° | g 11 olem D
iM 4M 7™M 10M iMm 4M 7™M 10M iMm 4M 7M 10M
Number of Tuples Number of Tuples Number of Tuples
(@) SUM (b) MIN (c) MAX

Fig. 11: Execution time (seconds) of OSM/WCM on correlated synthdéitaset with 5 attributeg, = 4

10000

Anti-Correlated
Independent ¢
Correlated

Anti-Cotrelated
Independent &
Correlated.

Anti-Correlated ™ €
Independent ¢
Correlated ¢

ime

1000

Execution Time
Execution Time

Execution Ti
I
o
o

2 3 }4 5
Number of Dimensions Number of Dimensions Number of Dimensions
(a) SUM (b) MIN (c) MAX
Fig. 12: Execution time (seconds, logarithmic scale) of OSM on diff synthetic datasets, = 3, n = 10 million

n k=3[k=5[] k=7
due to the effective input pruning. Table 8 shows that only ool IR B
less than 300 tuples remained aftedominator tuple pruning 20000 | 130 | 180 | 239
was applied. We also see that, in this dataset, WCM took less poocl ISl Il I

execution time than OSM for MIN function. This is partly due

to the overhead of OSM in performing candidate generatid@\BLE 8: Number of tuples dominated by less thantuples in
.) . - ._ stock dataset
and skyline comparison for multiple (group size, table ksizé

combinations, as mentioned in Section 4.3.1.

Anti-Correlated
Independent

Anti-Correlated
Independent ¢
Correlated

6.4 Experiments on Synthetic Datasets

Execution Time
Execution Time

To show the scalability of our methods, we experimented on

the synthetic datasets with 1 to 10 million tuples. In Figlte 2 3 a4 5
we see that OSM/WCM can finish within a minute on these Number of Dimensions Number of Dimensions
large datasets, fak=4 and all 3 functions. (@) MIN (b) MAX

The same methods will not be as efficient on independé}? . 13: Execution time (seconds, logarithmic scale) of WCM on
or even anti-correlated data. Figures 12 and 13 show t erent synthetic datasets, = 3, n = 10 million
performance of OSM/WCM on three different datasets of

equal cardinality, under different number of attributese Wtudy is to investigate the performance of our methods on

see that the execution time on anti-correlated and indepgn .) - .
: . .) .sKnthetlc data with such more realistic correlation pager
data increases quickly and soon the algorithm cannot finis

within reasonable amount of time. (Thus the correspondinfy CONCLUSION

bars are not plotted.) This is npt surprisin.g. In anti—cpﬂmﬂ We proposed the novel problem of finding skyline groups
dataset, values of a tuple on different attributes are n&g@at \yhich lends itself to many real-world applications. We de-
correlated. Hence it is more difficult to find a tuple domingti veloped novel algorithmic techniques on output compressio

othertuples_. This means in_put pruning in such a datasemanmput pruning, and search space pruning to address the prob-
reduce the input size effectively, and OSM/WCM cannot prunigy, For search space pruning, we identified a number of anti-

many candidates either. Attribute; in real datasets maj;_lerei monotonic properties to efficiently remove non-skylineugys

be fully correlated nor fully anti-correlated. The attiés fom consideration. Based on the properties, we developed
often form groups, such asbounds and blocks, assists gynamic programming and iterative algorithms for skyline
andsteals in basketball games. The attributes within the SaMfroup search. Experimental results on real and synthetic

group are correlated, while the ones across different grouytasets verify that the proposed algorithms achieve sraer
tend to be independent or anti-correlated. A direction dibuife magnitude performance gain over the baseline method.

14

ACKNOWLEDGMENT [29] P. Wu, C. Zhang, Y. Feng, B. Zhao, D. Agrawal, and A. El Abb

. . Parallelizing skyline queries for scalable distributidn. EDBT. 2006.
The work of Zhang is supported in part by NSF undggo] T. Xia and D. Zhang. Refreshing the sky: the compressgdube with

grants 0852674, 0915834, and 1117297. The work of Li is efficient support for frequent updates. $iGMOD, 2006.
partially supported by NSF grants 1018865, 1117360, aﬁ&] X. Zhang and J. Chomicki. Preference queries over $etCDE, 2011.

2011, 2012 HP Labs Innovation Research Award. The work
Das is partially supported by NSF grants 0812601, 09158
1018865, a NHARP grant from the Texas Higher Educatid
Coordinating Board, and grants from Microsoft Research a
Nokia Research. Any opinions, findings, and conclusions
recommendations expressed in this publication are those

Nan Zhang received the BS degree in Computer
Science from Peking University in 2001 and the
PhD degree in Computer Science from Texas
A&M University in 2006. He is an associate
professor of Computer Science at the George
Washington University. His current research in-
terests include databases and information secu-
rity/privacy. He is a member of the IEEE.

the author(s) and do not necessarily reflect the views of the

. . Chengkai Li is an Assistant Professor in the
funding agencies.

Department of Computer Science and Engineer-

ing at the University of Texas at Arlington. His

research interests include databases, Web data

management and data mining. In particular, he

works on computational journalism, database

exploration, database testing, entity search and

query, and ranking and skyline queries. He

received his Ph.D. degree in Computer Sci-

ence from the University of lllinois at Urbana-

[3] S. Antony, P. Wu, D. Agrawal, and A. El Abbadi. Moolap: Tamls Champaign in 2007, and an M.E. and a B.S.
multi-objective olap. INCDE, 2008. degree in Computer Science from Nanjing University, China, in 2000

[4] W.-T. Balke, U. Guntzer, and J. Zheng. Efficient disttix skylining and 1997, respectively. He is a member of the IEEE.
for web information systems. IEDBT. 2004.

[5] S. Borzsonyi, D. Kossmann, and K. Stocker. The skyloperator. In
ICDE, 2001.

[6] C. Chan, H. Jagadish, K. Tan, A. Tung, and Z. Zhang. Figdka
dominant skylines in high dimensional space.SIGMOD, 2006.

[7] C.-Y. Chan, H. Jagadish, K.-L. Tan, A. Tung, and Z. Zhat@n high
dimensional skylines. IiEDBT. 2006.

[8] S. Chaudhuri, N. Dalvi, and R. Kaushik. Robust cardiyaknd cost
estimation for skyline operator. IfCDE, 2006.

[9] B.-C. Chen, K. LeFevre, and R. Ramakrishnan. Privacylis&y privacy
with multidimensional adversarial knowledge. \\LDB, 2007.

[10] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skylinghapresorting.

REFERENCES

[1] R. Agrawal and R. Srikant. Fast algorithms for mining@sation rules
in large databases. MLDB, 1994.

[2] A. Anagnostopoulos, L. Becchetti, C. Castillo, A. Gisnand S. Leonar-
di. Power in unity: forming teams in large-scale communiggtems.
In CIKM, 2010.

Naeemul Hassan received his B.S. degree in
Computer Science from Bangladesh University
of Engineering and Technology. He is currently a
Ph.D. candidate in the Department of Computer
Science and Engineering at the University of
Texas at Arlington. His research interests include
skyline analysis, computational journalism, and
social media analytics.

Sundaresan Rajasekaran received an M.S. de-

In ICDE, 20083. gree in Computer Science from the George
[11] E. Dellis and B. Seeger. Efficient computation of reeeskyline queries. Washington University and a B.E. degree in
In VLDB, 2007. Computer Science from Anna University, India.

He is currently a Ph.D. candidate in the De-
partment of Computer Science at the George
Washington University. His research interests
include data privacy, network security and cloud
computing.

[12] P. Godfrey, R. Shipley, and J. Gryz. Maximal vector comation in
large data sets. INLDB, 2005.

[13] H.T.Kung, F.Luccio, and F.P.Preparata. On finding thexima of a set
of vectors.JACM, 22(4), 1975.

[14] D. Kossmann, F. Ramsak, and S. Rost. Shooting starseirsitdy: an
online algorithm for skyline queries. IMLDB, 2002.

[15] T. Lappas, K. Liu, and E. Terzi. Finding a team of expérnssocial
networks. InKDD, 2009.

[16] X. Lian and L. Chen. Monochromatic and bichromatic regeskyline
search over uncertain databases.SIGMOD, 2008.

[17] X.Lin, Y. Yuan, W. Wang, and H. Lu. Stabbing the sky: effiat skyline
computation over sliding windows. IfCDE, 2005.

[18] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting starbe k most
representative skyline operator. IGDE, 2007.

[19] M. Morse, J. M. Patel, and H. V. Jagadish. Efficient skglcomputation
over low-cardinality domains. IWVLDB, 2007. sity of Memphis. His research interests include

[20] NBA Dataset. from http://www.databasebasketbath,02012. data mining, information retrieval, databases,

[21] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressiytingk algorithms, and computational geometry. He is currently interested in
computation in database systenT€DS 2005. ranking, top-k query processing, and sampling problems in databases

[22] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic skels on uncertain as well as data management problems in the deep web, P2P and
data. InVLDB, 2007. sensor networks, social networks, blogs, and web communities. His

[23] J. Pei, Y. Yuan, X. Lin, W. Jin, M. Ester, Q. Liu, W. Wang, Yao, research has resulted in more than 130 papers which received several
J. X. Yu, and Q. Zhang. Towards multidimensional subspaggingk awards, including the IEEE ICDE 2012 Influential Paper award, VLDB
analysis. TODS 31(4), 2006. journal special issue on best papers of VLDB 2007, best paper of

[24] M. Sharifzadeh and C. Shahabi. The spatial skyline iggerin VLDB, ECML/PKDD 2006, and the best paper (runner up) of ACM SIGKDD
2006. 1998. He is on the editorial board of the journals the ACM Transactions

[25] Stock Dataset. from http://pages.stern.nyu.edufamodar/NewHome ~ on Database Systems and the IEEE Transactions on Knowledge and
Page/data.html, 2012. Data Engineering. He has served as the general chair of ICIT 2009,

[26] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progregs“sky“ne program chair of COMAD 2008, CIT 2004, and SIGMOD-DMKD 2004,
computation. InVLDB, 2001. and best paper awards chair of ACM SIGKDD 2006. His research

[27] Y. Tao, L. Ding, X. Lin, and J. Pei. Distance-based repreative has been supported by grants from US National Science Foundation,
skyline. InICDE, 2009. US Office of Naval Research, Department of Education, Texas Higher

[28] Y. Tao, X. Xiao, and J. Pei. Subsky: Efficient computatiof skylines Education Coordinating Board, Microsoft Research, Nokia Research,
in subspaces. IICDE, 2006. Cadence Design Systems, and Apollo Data Technologies. He is a

member of the IEEE.

Gautam Das received the BTech degree in
computer science from IIT Kanpur, India, and
the PhD degree in computer science from the
University of Wisconsin, Madison. He is a pro-
fessor in the Computer Science and Engineering
Department at the University of Texas, Arlington.
Prior to joining the University of Texas, Arlington
in Fall 2004, he held positions at Microsoft Re-
search, Compaq Corporation, and the Univer-

