On Skyline Groups

Chengkai Li

University of Texas at Arlington

Sundaresan Rajasekaran
George Washington University

ABSTRACT

We formulate and investigate the novel problem of findingskye
line k-tuple groupfrom ann-tuple dataset —i.e., groups lofuples
which are not dominated by any other group of equal size ase
aggregate-based group dominance relationship. The neajbnit
cal challenge is to identify effective anti-monotonic pedies for
pruning the search space of skyline groups. To this end, we sh
that the anti-monotonic property in the well-knowpriori algo-
rithm does not hold for skyline group pruning. We then identi
fy order-specific propertyvhich applies to SUM, MIN, and MAX
andweak candidate-generation propextsich applies to MIN and
MAX only. Experimental results on both real and synthetitadat-

s verify that the proposed algorithms achieve orders of ritagg
performance gain over a baseline method.

Categories and Subject Descriptors
H.2 [Database Managemerijt Database Applications

Keywords

skyline queries, group recommendation, anti-monotoniperties

1. INTRODUCTION

In this paper we formulate and investigate the novel proldém
computing theskyline groupsof a dataset. Consider a database
table ofn tuples andn numeric attributes. We refer to any subset
of k tuples in the table as/tuple group Our objective is to find,
for a givenk, all k-tuple skyline groups, i.ek-tuple groups that are
not dominatedby any otherk-tuple groups. While the traditional
skyline tuple problem has been extensively investigateaent
years [4-7,9, 12, 13], the skyline group problem surprisifs
not been studied in prior work.

The notion of dominance between groups is analogous to the

dominance relationship between tuples in skyline analysisiple
t1 dominatest, if and only if every attribute value of; is either
better than or equal to the corresponding valueJgfaccording
to application-specific preference order on the domain ohed-

Nan Zhang

George Washington University

Naeemul Hassan
University Texas at Arlington

Gautam Das
University of Texas at Arlington

Qatar Computing Research Institute

tuples in the dataset. Analogously the dominance reldtiprize-
tween two groups of tuples each is defined by comparing their
aggregates. To be more specific, we calculate for each greirp a
gle aggregate tuple, whose attribute values are aggregatedhe
corresponding attribute values of the tuples in the grouppu@s
are then compared by their aggregate tuples using tradittaple
dominance. While many aggregate functions can be considere
calculating aggregate tuples, in this paper we focus or tilistinct
functions that are commonly used in database applicati®idM
(i.e, AVG, since groups are of equal size), MIN and MAX.

Many real-world applications require to choose groups of ob
jects. In the booming multi-billion dollar industry of onk fantasy
sports, gamers compete by forming and managing team rasters
real-world athletes, aiming at outperforming other gamieams.
They select teams based on prediction of player performarioe
teams are compared by aggregated performance of the athiete
real games. For example, consider a table of the pool ofaail
NBA players in a basketball fantasy game. Each player iserepr
sented as a tuple consisting of several statistical catgguoints
per game, rebounds per game, assists per game, etc. Thgtlstren
of a team is thus captured by the corresponding aggregatbess
statistics. Another motivating application is to chooseraug of
experts to perform a task (e.g., develop a software) or tuat@a
work (e.g., review a grant proposal), based on the expestec
tive strength on multiple desired skills.

The capability of recommending groups is valuable in thevabo
mentioned applications. An attractive property of skylgreups
is that a skyline group cannot be dominated by any other group
In contrast, given a non-skyline group, there always exsbet-
ter group in the skyline. Hence the skyline groups presesdeh
groups that are worth recommending. They become the input to
further (manual or automated) process that ultimatelymenends
one group. Examples of such post-processing include dympal
the skyline groups, more systematic browsing and visuédizaf
the skyline groups, and filtering and ranking the groups wting
to user preference.

To find k-tuple skyline groups in a table of tuples, there can

tribute, andi; has better value on at least one attribute. The set of P€ () different candidate groupsiow do we compute the skyline

skyline tuples are those tuples that are not dominated bytrgr

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

CIKM'12, October 29—November 2, 2012, Maui, HI, USA.

Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

groups ofk tuples each from all possible groupsterestingly, the
skyline group problem is significantly different from thaditional
skyline tuple problem, to the extent that algorithms forltter are
quite inapplicable in solving the former.

A simple solution to the problem is to first list &[) groups,
compute the aggregate tuple for each group, and then useaany t
ditional skyline tuple algorithm to identify the skylineaps. The
main problem with such an approach is the significant computa
tional and storage overhead of having to create this hugenig-
diate input for the traditional skyline tuple algorithme(i,O((}))

for ann-tuple input dataset). The skyline group problem also has of tuples are based on featureske$ubsets. The features are more

another idiosyncrasy that is not shared by the skyline tppbb-
lem. For certain aggregate functions, specifically MAX antNM
even the output size —i.e., the number of skyline groupsymed —

while significantly smaller tha(:), may be nevertheless too large

to explicitly compute and store. To address these two pnableve
develop novel techniques, namalytput compressiqrnput prun-
ing, andsearch space pruning

general than numeric aggregate functions considered imvotk.
The preferences given on each individual feature form dgbamt-
der over thek-subsets instead of a total order by numeric values.
Their general framework can model many different queriedyid-
ing our skyline group problem. The optimization techniqfies
that framework, namely theuperpreferencandM-relation ideas,
when instantiated for our specific problem, are essentéjlyiva-

For MAX and MIN aggregates, we observe that numerous group- lent to input pruning in our solution as well as merging idesit
s may share the same aggregate tuple. Our approach to campres tuples. Hence such an instantiation is a baseline solutioout

ing output is to list the distinct aggregate tuples, eachasgnting
possibly many skyline groups, but also provide enough amit
information so that the actual skyline groups can be recocistd
if required. Interestingly, there is a difference betweelNNnd
MAX in this regard: while the compression for MIN is relatiye
efficient, the compression for MAX requires solution to thB-N
Hard Set Cover Problem (which fortunately is not a real issue
practice, as we shall show in the paper).

Our approach to input pruning is to filter input tuples anahiig
icantly reduce input size to the search of skyline groups. r@ain
observation is that if a tuple is dominated byt or more tuples
in the original table, then we can safely excludom the input
without influencing the distinct aggregate tuples founchatend.
We also find that for MAX, we can safely exclude any non-slkedin
tuple from the input without influencing the results.

Our final ideas (perhaps, technically the most sophisticafe

the paper) are on search space pruning. Instead of enungerati
each and ever¥-tuple combination, we exclude from considera-
tion a large number of combinations. To enable such caralidat

pruning, we identify two properties inspired by the antinotonic
property in the well-knowrApriori algorithm for frequent item-
set mining [1]. However, it is important to emphasize hew the
anti-monotonic property in Apriodoes not holdor skyline group-

s defined by SUM, MIN or MAX. More specifically, a subset of a

skyline group may not necessarily be a skyline group it§éifis, a
significant part of our technical contribution is the idénttion of
alternate anti-monotonic properties which serve our dgms. In
particular, we identify (aorder-Specific Anti-Monotonic Proper-

ty, a generic property that applies to SUM, MIN and MAX, and

(b) Weak Candidate-Generation Propenyhich applies to MIN

and MAX but not SUM. Based on the two properties, we devel-
op algorithms to compute skyline groups. These algorithims i

eratively generate larger candidate groups from smalles @nd
prune candidate groups by these properties. In particwiarie-
velop a dynamic programming algorithm that leverages tlierer
specific property and an iterative algorithm that leveragesveak
candidate-generation property. Due to space limitatimesijo not
further discuss the algorithms and refer interested reattethe
extended version of this paper [11].

2. RELATED WORK

Skyline query has been intensively studied over the lashdic
Kung et al. [8] first proposed in-memory algorithms to tackie
skyline problem. Bd&rzsoényi et al. [4] was the original wohat
studied how to process skyline queries in database syst&ns.
ince then, this line of research includes proposals of ivguical-
gorithms [6, 7], progressive skyline computation [9, 13, IRiery
optimization [5], and many variants of skyline queries.

With regard to the concept of skyline groups, the most relat-
ed previous works are [3] and [14]. In [3] groups are defined by
GROUP BY in SQL, while the groups in our work are formed by
combinations of: tuples in a tuple set. Zhang et al. [14] studied set

preferences where the preference relationships betweeibsets

problem. However, the important search space pruning piiepe
and output compression in Section 4 are specific to our pmoble
and were not studied before. These ideas bring substaetitdrp
mance improvement, as the comparison with the baselinedgn Se
tion 5 shall demonstrate.

With regard to the problem of forming expert teams to solve
tasks, the most related prior works are [10] and [2]. In [2ins
are ranked by a scoring function, while in our case groupsame
pared by skyline-based dominance relationship. In [1@tead of
measuring how well teams match tasks, the focus was on measur
ing if the members in a team can effectively collaborate wich
other, based on information from social networks.

3. SKYLINE GROUP PROBLEM

Consider a database tallleof n tuples{ti, ..., t,} andm at-
tributesAs, ..., A,,. We refer to any subset &ftuples in the table,
i.e.,G: {ti,...,ti} C D, as ak-tuple group Our objective is to
find the skyline ofk-tuple groups. In particular, whetherkatuple
group belongs to the skyline or not is determined by the compa
ison, i.e., the “dominance relationship”, between thisugrand
otherk-tuple groups. The dominance test, when taking two groups
G1 and G as input, produces one of three possible outpufs —
dominatesG, G2 dominatesG'y, or neither dominates the other.
A k-tuple group is akylinek-tuple group or skyline grougn short
(without causing ambiguity), if and only if it is not domireat by
any otherk-tuple group inD.

More specifically, groups are compared by their aggreg&tash
group is associated with @ggregate vectqi.e., anm-dimensional
vector with thei-th element being an aggregate valueAfover
all k tuples in the group. The aggregate vectors can be computed
by different aggregate functions. In this paper we focustoae
commonly used aggregate functions: SUM (i.e, AVG, sinceigso
are of equal size), MIN, and MAX. The aggregate vectors far tw
groups are compared according to the traditional tuple dande
relationship used in all existing work on skyline tuples.cBtra-
ditional tuple dominance relationship is defined accordimger-
tain application-specific preferences. In particular, hspeefer-
ences are captured as a combination of total orders fotabates,
where each total order is defined over (all possible valugaro&t-
tribute, with “larger” values always preferred over “sneallvalues.
Hence, an aggregate vectardominates; if and only if every at-
tribute value ofv, is either larger than or equal to the corresponding
value ofv, according to the preference order andis larger than
vz 0N at least one attribute.

Table 1 depicts a 5-tuple, 2-attribute table which we shegl as
a running example throughout this section. Figure 1 defhet$ive
tuples on a 2-dimensional plane defined by the two attributés
consider the natural order of real numbers as the preferenie
for all attributes. For instanceé; dominatess while neithert, nor
t3 dominates each other. Table 2 shows a sample case of compar-
ing two 3-tuple groups for each aggregate function. Figusd-1
so shows the symbols corresponding to MIN and MAX aggregate
vectors of skyline 2-tuple groups in the running exampler iRe

stance, the skyline 2-tuple group under MAX function is,{2},
with aggregate vectof3, 3). The aggregate vectors of skyline 2-
tuple groups under MIN aré€2, 1) (for group {ts, t4}) and (0, 2)
(for groups §2,ta}, { t2,ts}, { ta, ts}).

A Ao
t1 3 0 O tuple
to 0 3 X MAX skyline
t3 2 1 aggr vector
|2 2 O soree
5| 0 2 —
Table 1: Running Exampldrigure 1: Running Example in 2-d Space
Tuples SUM MAX MIN
G [t2(0,3) t3(2,1) t4(2,2)] (4,6) (2,3) (0,1)
G't3(2,1) t4(2,2) t5(0,2)| (4,5) (2,2) (0,1)
Dominance Relationship G- G" G - G' G =G’

Table 2: Examples of aggregate-based comparison

4. FINDING SKYLINE GROUPS

In this section, we develop our main ideas for finding skyline
groups. We start by considering a brute-force approachiwfirist
enumerates each possible combinatioh ufples in the input table,
computes the aggregate vector for each combination, amdithe
vokes a traditional skyline-tuple-search algorithm to fitickyline
groups. This approach has two main problems. One is itsfsigni
icant computational overhead, as the input size to the fiegl s
i.e., skyline tuple search — i§}), which can be extremely large.
The other problem is actually on the seemingly natural egrabf
listing all skyline groups as the output. The problem hetbkas, for
certain aggregate functions (e.g., MAX and MIN), even thgpat
size — i.e., the number of skyline groups produced — may be nev
ertheless too large to explicitly compute and store. Sudirgel
output size not only leads to significant overhead in conmguaind
storing skyline groups, but also makes post-processimg, (@nk-
ing and browsing of skyline groups) costly.

Another idea is to consider skyline tuples only. While seegtyi
intuitive, this idea will not work correctly in general. Iragicular,
we have the following two observations:

1. A group solely consisting of skyline tuples magt be a skyline
group. Consider grou@={t1, t2} in the running example. Note
that botht; andt, are skyline tuples. Nonetheless, with SUM
function, G is dominated byG'={ts,t4}, as SUMG)=(3, 3)
while SUM(G")=(4, 3). As suchG is not on the skyline.

. A group containing non-skyline tuples could be a skylinaug,
even if there are skyline tuples which are not included in the
group. Again consider the running example, this time with-
{ts,t5} and MIN function. Note thats is not on the skyline as
it is dominated byt> andts. Nonetheless(7 (with MIN(G) =
(0, 2)) is actually on the skyline, because the only other groups
which can reactd, > 2 in the aggregate vector afé;, ¢4} and
{t2,t5}, both of which yield an aggregate vector @, 2), the
same as MING). Thus,G is on the skyline despite containing
a non-skyline tuple.

To address these challenges, we develop several techpigumas-
ly output compressigrinput pruning andsearch space pruning
We start with developing aoutput compressiotechnique that sig-
nificantly reduces the output size when the number of skgioep-
s is large, thereby enabling more efficient downstream psEe

significantly reduce the input size to the search of skylirmig-

s. The other isearch space pruning i.e., instead of enumerat-
ing each and everk-tuple combination, we develop technigues to
quickly exclude from consideration a large number of coration-

s. Note that the two types of pruning techniques are trarspso
each other and therefore can be readily integrated.

4.1 Output Compression for MIN and MAX

Main Idea: A key observation driving our design of output com-
pression is that while the number of skyline groups may bgelar
many of these skyline groups share the same aggregate.vEetry,
our main idea for compressing skyline groups is to store hekg-
line groups, but only the (much fewer) distinct skyline agste
vectors (in shorskyline vector as well as one skyline group for
each skyline vector.

Among the three aggregate functions we consider in the paper
i.e., SUM, MIN and MAX, the SUM function rarely, if ever, re-
quires output compression. In the rest of the paper, we &alks
on the problem of finding all skyling-tuple groups for SUM, and
finding all distinct skyline vectors and their accompanyisgm-
ple) skyline groups for MIN and MAX. We use the term “skyline
search” to refer to the process in solving the problem.

Reconstructing all Skyline Groups for a Skyline Vector: While

the distinct skyline vectors and their accompanying (sajngky-

line groups may suffice in many cases, a user may be willing to
spend time on investigating all groups equivalent to a paldr
skyline vector, and to choose a group after factoring in memit-

edge and preference. Thus, we now discuss how one can recon-
struct all skyline groups from a given skyline vector, if uagd.

Consider MIN first. For a given MIN skyline vectar, the pro-
cess is as simple as findifg(v), the set of all input tuples which
dominate or are equal to. The reason is as follows. Given any
k-tuple subset of2(v), its aggregate vector either dominates or is
equal tov, thus it must be a skyline group. On the other hand, any
group which contains a tuple outside@fv) must have an aggre-
gate vector dominated hy, and therefore cannot be in the skyline.
The time complexity of a linear scan process in finding) is
O(n). GivenQ(v), the only additional step needed is to enumerate
all k-tuple subsets d2(v).

For MAX, interestingly, the problem is much harder. To under
stand why, consider each tuple as a set consisting of alhuatits
for which the tuple reaches the same value as a MAX skyline vec
tor. The problem is now transformed to finding all combinatio
of k tuples such that the union of their corresponding sets is the
universal set of all attributes — i.e., finding all set covefsize
k. The NP-hardness of this problem directly follows from the
NP-completeness of SET-COVER, seemingly indicating thadV
skyline groups should not be compressed.

Fortunately, despite of the theoretical intractabilitydiing all
skyline groups matching a MAX skyline vectoris usually effi-
cient in practice. This is mainly because the number of sipiat
“hit” the MAX attribute values irw —i.e., the input size — is typical-
ly small. As such, even a brute-force enumeration can baegftic
as demonstrated by experimental results in Section 5.

4.2 Input Pruning

We now consider the pruning of input to skyline group seasche
which is originally the set of alh tuples. An important observation
is that if a tuplet is dominated byt or more tuples in the original ta-
ble, then we can safely excludé&om the input without influencing

that consume the skyline groups. Then, we consider how to ef- the distinct skyline vectors found at the end. To understahy,

ficiently find skyline groups. In particular, we shall deberitwo
main ideas. One imput pruning- i.e., filtering the input tuples to

suppose that a skyline group contains a tuple which is domi-
nated byh (h>k) tuples. There is always an input tuglfewhich

dominatest and is not inG. Sincet’ dominates, the number of
tuples which dominaté¢ must be smaller thah. Note that ift’ is

still dominated byt or more tuples, we can repeat this process until
findingt'¢G that is dominated by less thartuples. Now consider
the construction of another grou@’ by replacingt in G with ¢'.

For SUM, one can see that' always dominates/, contradicting
our assumption tha® is a skyline group. Thus, no skyline group
under SUM can contain any tuple dominatedkbgr more tuples.

For MIN and MAX, it is possible that the aggregate vectors of
the above’ and G are exactly the same. Even in this case, we
can still safely exclude from the input without influencing the
distinct skyline vectors. If there are other tuplesGnwhich are
dominated byk or more tuples, we can use the same process to
remove them all and finally reach a group that (1) featuresanse
aggregate vector &3, and (2) has no tuple dominated byr more
other tuples. Thus, we can safely remove all tuples withaxtle
dominators for all aggregate functions —i.e., SUM, MIN an&X/

Another observation for input pruning is that, for MAX onlye
can safely exclude any non-skyline tupléom the input without
influencing the skyline vectors. The reason can be explaased
follows. Suppose that a skyline grodp contains a non-skyline
tuple ¢t which is dominated by another skyline tugle If ' ¢ G,
then we can replacein G with ¢’ to achieve the same (skyline)
aggregate vector (becaueis a skyline group). I’ € G, we can
removet from G without changing the aggregate vector®@f In
either way,t can be safely excluded from the input. By repeatedly
replacing or removing non-skyline tuples in the above wagywill
obtain a group of size at mostthat is formed solely by skyline
tuples? Padding the group with arbitrary additional tuples to reach
sizek will result in a group of the same aggregate vectotas

4.3 Search Space Pruning: Anti-Monotonicity

Our principal idea for search space pruning is to find andrieve
age a number oéinti-monotonic propertiefor skyline search, in
analogy to the Apriori algorithm for frequent itemset migifi]. It
is important to note that the anti-monotonic property inAlpeiori
algorithm — i.e., every subset of a group “of interest” (eaggroup
of frequent items or a skyline group) must also be “of int€rits
self — does not hold for skyline search over SUM, MIN or MAX. In
fact, two examples in Section 3 can serve as proof by cormtiadi
to demonstrate the inapplicability for SUM and MIN. Spedifig,
for SUM, skyline2-tuple group{ts, t4+} contains a non-skyline tu-
ple ts, i.e., a non-skylinel-tuple group. For MIN, skyline group
{ts,t5} contains a non-skyline tuple. For MAX, the inapplica-
bility can be easily observed from the fact that the set ofuglles
is always a skylinex-tuple group, while many subsets of it are not
on their corresponding skylines of equal group size.

4.3.1 Order-Specific Anti-Monotonic Property

Our first idea is to factor in an order of all tuples. To under-
stand how, consider a skyliretuple groupG. which violates the
Apriori property — i.e., ak—1)-tuple subset of it(G,_1 C Gy,
is not a skyline k—1)-tuple group. We note for this case that
all (k—1)-tuple groups which dominat€',,_; must contain tuple
tr = Gr\Gr—1. To understand why, suppose that there exist-
s a —1)-tuple groupG’ which dominates;_; but does not
containt,. Then, G’ U {tx} would always dominate or equal
Gr = Gr-1 U {t}, contradicting the skyline assumption fG¥,.

!Note that if the resulting group has size smaller thathen it (and
thus) reaches the maximum values on all attributes. If there are
fewer thank skyline tuples in the input, then we can immediately
conclude that any skylink-tuple group must reach the maximum
values on all attributes.

One can see from this example that while a subset of a skyline
group may not be on the skyline for the entire input tables &li
ways a skyline group over a subset of the input table — inqadf,
D\{tx} in the above example.

Definition 1 Order-Specific Property An aggregate functiox
satisfies theorder-specific anti-monotonic propertfyand only if
Vk, if a k-tuple groupG, with aggregate vectar(i.e.,v = F(Gr))
is a skyline group, then for each tuplén G, there must exist a
set ofk — 1 tuplesGi_1 C D with ¢t € G_1, such that (1)7x—1
is a skyline(k — 1)-tuple group over an input table\{t}, and (2)
Gr—1 U {t} is a skylinek-tuple group over the original input table
D which satisfiesF (Gr-1 U {t}) = v. |

It may be puzzling where the “order” comes from — we note
that it actually lies on the way search-space pruning candoe d
according to this anti-monotonic property: Consider ariteaty
order of all tuples in the input table, s&#, ..., t,). For anyr <
n, if we know that ank-tuple groupGj, (b < r) is nota skyline
group over{ts,...,t,}, then we can safely prune from the search
space alk-tuple groups whose intersection wigh, . . ., t, } isGp,
— a reduction of the search space sizelfyn — r)*=").

Theorem 1 SUM, MIN and MAX satisfy the order-specific anti-
monotonic property. [|

To prune based on this order-specific property, one has te com
pute for everyh € [k,n — k] the aggregate vectors of all skyline
1, 2,..., min(k, h)-tuple groups over the firgt tuples (according
to the order), because any of these groups may grow into a sky-
line k-tuple group when latter tuples (again, according to thegrd
are brought into consideration. Given a largethe order-specific
pruning process may incur a significant overhead. To addnéss
we consider an order-free anti-monotonic property as\igdlo

4.3.2 Weak Candidate-Generation Property

The main idea is that, instead of requiriagery(k — 1)-tuple
subset of a skyliné-tuple group to be a skyling: — 1)-tuple group
(as in the Apriori property), we consider the following peoty
which only requiresat least onesubset to be on the skyline.

Definition 2 (Weak Candidate-Generation Property)An aggre-
gate functionZ satisfies theveak candidate-generation property
if and only if, Vk and for any aggregate vector of a skylinek-
tuple group, there must exist an aggregate vegtos for a skyline
(k — 1)-tuple group, such that for anfys — 1)-tuple groupG—1
which reachesy,_1 (i.e., F(Gk—-1) = vk—1), there must exist an
input tuplet ¢ Gi—1 which makesG,_1 U {t} a skylinek-tuple
group that reaches(i.e., F(Gr—1 U {t}) = v). |

An intuitive way to understand the definition is to considee t
case where every skyline group has a distinct aggregatervect
In this case, the weak anti-monotonic property holds whesryev
skyline k-tuple group has at least onk—-{1)-tuple subset being a
skyline (k—1)-tuple group. The property is clearly “weaker” than
the classic (Apriori) anti-monotonic property when beirsgd for
pruning, in the sense that it allows more candidate sets teber-
ated than directly (and mistakenly) applying the classapprty.

Theorem 2 MIN and MAX satisfy the weak candidate-generation
property, while SUM does not satisfy the property. |

5. EXPERIMENTS

In this section we provide a partial presentation of our expe
imental results. We refer interested readers to the extende
sion [11] for more details and results.

Datasets We collected 512 tuples of NBA players who had

played in the 2009 regular season. The tuple of each player ha

10000
1000
100
10

10000

£ 1000

Execution Time
Execution Tim
=
1)
3

0.1
0.01
0.001

=
o

1] | | | |
100 200 300 400 500
Number of Tuples

(b) k=5

1 3 5 7
Number of Tuples per Group

() n = 300

1e+08

BASELINE
OsM

BASELINE
] OSM tzzzzz

1le+07

=
®
e
=)
=)

00000

Total Candidate Groups

10000 -
500

100 200 300 400
Number of Tuples

1 3 5 7
Number of Tuples per Group

(c) n = 300 d) k=5

Figure 2: (a)-(b): Execution time (in seconds, logarithstele) and (c)-(d): number of candidate groups (logarittsnale), SUM

5 performance statistics — points per game, rebounds peg,gsn
sists per game, steals per game, and blocks per game. Péaykrs
groups of players are compared by these statistics andabeie-
gates. To study the scalability of our methods, we also éxysent-
ed with synthetic datasets produced by the data generafdi.in
The datasets have 1 to 10 million tuples, on 5 attributes. dese
ta generator allows us to produce datasets where the &tfsibwe
correlated, independent, and anti-correlated.

Aggregate Functions and Methods Compared We investi-
gated the performance of two algorithms based on orderifapec
property (OSM) and weak candidate-generation property MINC
respectively. We also compared these methods with theibasel
method (BASELINE), which is a direct adaptation of the gaher
framework in [14] for our problem (cf. Section 2). We exedlte
these methods for aggregate functions SUM, MIN, and MAX. Due
to space limitations, we will not discuss the results fromMIC

Size of Output under Different Functions: Table 3 shows, for
differentn (number of tuples, i.e., dataset size{number of tuples
per group, i.e., group size), and aggregate functions, uheer of
all possible groups (G), the number of all skyline groups &y
the number of distinct aggregate vectors (V) for the skytjreups.
The table is for correlated synthetic datasets. It can be ted
G quickly becomes very large, which indicates that any extia
method will suffer due to the large space of possible answers

Among the 3 functions, in general SUM has the largest number
of skyline vectors and MAX results in the smallest outpuésithis
is due to the intrinsic characteristics of these functionzomput-
ing the aggregate vector for a group, SUM reflects the stheofjt
all group members on each dimension. Hence it is more difficul
for a group to dominate or equal to another group on everyiime
sion. In contrast, MIN (MAX) chooses the lowest (highestuea

Comparison of Various Methods: Figure 2 shows the execu-
tion time and number of generated candidate groups, by BASE-
LINE/OSM for SUM, over the NBA dataset. In sub-figure (a) and
(c), we fix the size of datasen) to 300 tuples and vary group
size). In sub-figure (b) and (d), we fix the group siZze=p) and
vary dataset size. We observed that OSM performed sulestgnti
(often orders of magnitude in execution time) better tharSBA
LINE. Without the order-specific pruning properties, BASEE
produced much more candidate groups than OSM.

Acknowledgments: The work of Li is partially supported by NS-

F grants 1018865, 1117369, and 2011, 2012 HP Labs Innovation
Research Award. The work of Zhang is supported in part by NSF
under grants 0852674, 0915834, and 1117297. The work of Das
is partially supported by NSF grants 0812601, 0915834, 8633

a NHARP grant from the Texas Higher Education Coordinating
Board, and grants from Microsoft Research and Nokia Rekearc
Any opinions, findings, and conclusions or recommendat®as
pressed in this publication are those of the author(s) andaio
necessarily reflect the views of the funding agencies.

6. REFERENCES

[1] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databasesvLiDB, 1994.

[2] A. Anagnostopoulos, L. Becchetti, C. Castillo, A. Gieni
and S. Leonardi. Power in unity: forming teams in
large-scale community systems.@iKM, 2010.

[3] S. Antony, P. Wu, D. Agrawal, and A. El Abbadi. Moolap:
Towards multi-objective olap. ICDE, 2008.

[4] S. Borzsonyi, D. Kossmann, and K. Stocker. The skyline
operator. INCDE, 2001.

among group members on each dimension. Hence skyline groups [5] S. Chaudhuri, N. Dalvi, and R. Kaushik. Robust cardityali

are formed by relatively small number of extremal tuples.

On the other hand, if we compare the sizes of all skyline gsoup
including the equivalent ones, itis rare under SUM to havéipia
skyline groups sharing the same aggregate vector. MAX teesul
much more equivalent groups.

N k=2 [k=4 [k=6
G STV G S|V G S|V
SUM 247(247 1654 1654 6146 | 6146
1M | MIN |4x10%! 187|141 4% 1022 | 1914| 436 [1x 1033 | 12816] 870
MAX 368|220 147| 73 29M| 1
SUM 219]219 1610] 1610 7482 7482
4M | MIN |8x10'2]179|131| 1x10%° | 2182| 461 | 6x 1036 | 17784 1148
MAX 396|274 164 | 78 1M| 1
SUM 221[221 1374] 1374 58255825
7M | MIN [2x10'3[188|134| 1x 1026|2193 455 | 2x 1038 | 16347| 1002
MAX 552|323 354 | 90 55M| 1
SUM 210] 210 1300] 1300 4487 [4487
10 M| MIN [4x10'3|183|133]|4x1026|2130[450 | 1x103° | 15442(913
MAX 402|224 968 | 63 08B| 1

Table 3: Number of all groups (G), skyline groups (S), andints
vectors for skyline groups (V), under differemt &, and functions.
Correlated synthetic dataset. M: million, B: billion.

and cost estimation for skyline operator!@DE, 2006.

[6] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skylinetwi

presorting. INCDE, 2003.

P. Godfrey, R. Shipley, and J. Gryz. Maximal vector

computation in large data sets.ViLDB, 2005.

H.T.Kung, F.Luccio, and F.P.Preparata. On finding the

maxima of a set of vectordACM, 22(4), 1975.

D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the

sky: an online algorithm for skyline queries. WL.DB, 2002.

[10] T. Lappas, K. Liu, and E. Terzi. Finding a team of expénmts
social networks. IiKDD, 2009.

[11] C.Li, N. Zhang, N. Hassan, S. Rajasekaran, and G. Das. On
skyline groups (extended version). Technical report, CSE
Department, University of Texas at Arlington, August 2012.

[12] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive
skyline computation in database system®DS 2005.

[13] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressiv
skyline computation. IIVLDB, 2001.

[14] X.Zhang and J. Chomicki. Preference queries over gets.
ICDE, 2011.

(7]
(8]
(9]

