
On Skyline Groups

Chengkai Li
University of Texas at Arlington

Nan Zhang
George Washington University

Naeemul Hassan
University Texas at Arlington

Sundaresan Rajasekaran
George Washington University

Gautam Das
University of Texas at Arlington

Qatar Computing Research Institute

ABSTRACT
We formulate and investigate the novel problem of finding thesky-
linek-tuple groupsfrom ann-tuple dataset – i.e., groups ofk tuples
which are not dominated by any other group of equal size, based on
aggregate-based group dominance relationship. The major techni-
cal challenge is to identify effective anti-monotonic properties for
pruning the search space of skyline groups. To this end, we show
that the anti-monotonic property in the well-knownApriori algo-
rithm does not hold for skyline group pruning. We then identi-
fy order-specific propertywhich applies to SUM, MIN, and MAX
andweak candidate-generation propertywhich applies to MIN and
MAX only. Experimental results on both real and synthetic dataset-
s verify that the proposed algorithms achieve orders of magnitude
performance gain over a baseline method.

Categories and Subject Descriptors
H.2 [Database Management]: Database Applications

Keywords
skyline queries, group recommendation, anti-monotonic properties

1. INTRODUCTION
In this paper we formulate and investigate the novel problemof

computing theskyline groupsof a dataset. Consider a database
table ofn tuples andm numeric attributes. We refer to any subset
of k tuples in the table as ak-tuple group. Our objective is to find,
for a givenk, all k-tuple skyline groups, i.e.,k-tuple groups that are
not dominatedby any otherk-tuple groups. While the traditional
skyline tuple problem has been extensively investigated inrecent
years [4–7, 9, 12, 13], the skyline group problem surprisingly has
not been studied in prior work.

The notion of dominance between groups is analogous to the
dominance relationship between tuples in skyline analysis. A tuple
t1 dominatest2 if and only if every attribute value oft1 is either
better than or equal to the corresponding value oft2, according
to application-specific preference order on the domain of each at-
tribute, andt1 has better value on at least one attribute. The set of
skyline tuples are those tuples that are not dominated by anyother

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

tuples in the dataset. Analogously the dominance relationship be-
tween two groups ofk tuples each is defined by comparing their
aggregates. To be more specific, we calculate for each group asin-
gle aggregate tuple, whose attribute values are aggregatedover the
corresponding attribute values of the tuples in the group. Groups
are then compared by their aggregate tuples using traditional tuple
dominance. While many aggregate functions can be considered in
calculating aggregate tuples, in this paper we focus on three distinct
functions that are commonly used in database applications –SUM
(i.e, AVG, since groups are of equal size), MIN and MAX.

Many real-world applications require to choose groups of ob-
jects. In the booming multi-billion dollar industry of online fantasy
sports, gamers compete by forming and managing team rostersof
real-world athletes, aiming at outperforming other gamers’ teams.
They select teams based on prediction of player performance. The
teams are compared by aggregated performance of the athletes in
real games. For example, consider a table of the pool of available
NBA players in a basketball fantasy game. Each player is repre-
sented as a tuple consisting of several statistical categories: points
per game, rebounds per game, assists per game, etc. The strength
of a team is thus captured by the corresponding aggregates ofthese
statistics. Another motivating application is to choose a group of
experts to perform a task (e.g., develop a software) or to evaluate a
work (e.g., review a grant proposal), based on the experts’ collec-
tive strength on multiple desired skills.

The capability of recommending groups is valuable in the above-
mentioned applications. An attractive property of skylinegroups
is that a skyline group cannot be dominated by any other group.
In contrast, given a non-skyline group, there always existsa bet-
ter group in the skyline. Hence the skyline groups present those
groups that are worth recommending. They become the input to
further (manual or automated) process that ultimately recommends
one group. Examples of such post-processing include eyeballing
the skyline groups, more systematic browsing and visualization of
the skyline groups, and filtering and ranking the groups according
to user preference.

To find k-tuple skyline groups in a table ofn tuples, there can
be

(

n

k

)

different candidate groups.How do we compute the skyline
groups ofk tuples each from all possible groups?Interestingly, the
skyline group problem is significantly different from the traditional
skyline tuple problem, to the extent that algorithms for thelater are
quite inapplicable in solving the former.

A simple solution to the problem is to first list all
(

n

k

)

groups,
compute the aggregate tuple for each group, and then use any tra-
ditional skyline tuple algorithm to identify the skyline groups. The
main problem with such an approach is the significant computa-
tional and storage overhead of having to create this huge interme-
diate input for the traditional skyline tuple algorithm (i.e.,O(

(

n

k

)

)

for ann-tuple input dataset). The skyline group problem also has
another idiosyncrasy that is not shared by the skyline tupleprob-
lem. For certain aggregate functions, specifically MAX and MIN,
even the output size – i.e., the number of skyline groups produced –
while significantly smaller that

(

n

k

)

, may be nevertheless too large
to explicitly compute and store. To address these two problems, we
develop novel techniques, namelyoutput compression, input prun-
ing, andsearch space pruning.

For MAX and MIN aggregates, we observe that numerous group-
s may share the same aggregate tuple. Our approach to compress-
ing output is to list the distinct aggregate tuples, each representing
possibly many skyline groups, but also provide enough additional
information so that the actual skyline groups can be reconstructed
if required. Interestingly, there is a difference between MIN and
MAX in this regard: while the compression for MIN is relatively
efficient, the compression for MAX requires solution to the NP-
Hard Set Cover Problem (which fortunately is not a real issuein
practice, as we shall show in the paper).

Our approach to input pruning is to filter input tuples and signif-
icantly reduce input size to the search of skyline groups. Our main
observation is that if a tuplet is dominated byk or more tuples
in the original table, then we can safely excludet from the input
without influencing the distinct aggregate tuples found at the end.
We also find that for MAX, we can safely exclude any non-skyline-
tuple from the input without influencing the results.

Our final ideas (perhaps, technically the most sophisticated of
the paper) are on search space pruning. Instead of enumerating
each and everyk-tuple combination, we exclude from considera-
tion a large number of combinations. To enable such candidate
pruning, we identify two properties inspired by the anti-monotonic
property in the well-knownApriori algorithm for frequent item-
set mining [1]. However, it is important to emphasize here that the
anti-monotonic property in Aprioridoes not holdfor skyline group-
s defined by SUM, MIN or MAX. More specifically, a subset of a
skyline group may not necessarily be a skyline group itself.Thus, a
significant part of our technical contribution is the identification of
alternate anti-monotonic properties which serve our algorithms. In
particular, we identify (a)Order-Specific Anti-Monotonic Proper-
ty, a generic property that applies to SUM, MIN and MAX, and
(b) Weak Candidate-Generation Propertywhich applies to MIN
and MAX but not SUM. Based on the two properties, we devel-
op algorithms to compute skyline groups. These algorithms it-
eratively generate larger candidate groups from smaller ones and
prune candidate groups by these properties. In particular,we de-
velop a dynamic programming algorithm that leverages the order-
specific property and an iterative algorithm that leveragesthe weak
candidate-generation property. Due to space limitations,we do not
further discuss the algorithms and refer interested readers to the
extended version of this paper [11].

2. RELATED WORK
Skyline query has been intensively studied over the last decade.

Kung et al. [8] first proposed in-memory algorithms to tacklethe
skyline problem. Börzsönyi et al. [4] was the original work that
studied how to process skyline queries in database systems.S-
ince then, this line of research includes proposals of improved al-
gorithms [6, 7], progressive skyline computation [9, 12, 13], query
optimization [5], and many variants of skyline queries.

With regard to the concept of skyline groups, the most relat-
ed previous works are [3] and [14]. In [3] groups are defined by
GROUP BY in SQL, while the groups in our work are formed by
combinations ofk tuples in a tuple set. Zhang et al. [14] studied set
preferences where the preference relationships betweenk-subsets

of tuples are based on features ofk-subsets. The features are more
general than numeric aggregate functions considered in ourwork.
The preferences given on each individual feature form a partial or-
der over thek-subsets instead of a total order by numeric values.
Their general framework can model many different queries, includ-
ing our skyline group problem. The optimization techniquesfor
that framework, namely thesuperpreferenceandM-relation ideas,
when instantiated for our specific problem, are essentiallyequiva-
lent to input pruning in our solution as well as merging identical
tuples. Hence such an instantiation is a baseline solution to our
problem. However, the important search space pruning properties
and output compression in Section 4 are specific to our problem
and were not studied before. These ideas bring substantial perfor-
mance improvement, as the comparison with the baseline in Sec-
tion 5 shall demonstrate.

With regard to the problem of forming expert teams to solve
tasks, the most related prior works are [10] and [2]. In [2] teams
are ranked by a scoring function, while in our case groups arecom-
pared by skyline-based dominance relationship. In [10], instead of
measuring how well teams match tasks, the focus was on measur-
ing if the members in a team can effectively collaborate witheach
other, based on information from social networks.

3. SKYLINE GROUP PROBLEM
Consider a database tableD of n tuples{t1, . . . , tn} andm at-

tributesA1, . . . , Am. We refer to any subset ofk tuples in the table,
i.e.,G : {ti1, . . . , tik} ⊆ D, as ak-tuple group. Our objective is to
find the skyline ofk-tuple groups. In particular, whether ak-tuple
group belongs to the skyline or not is determined by the compar-
ison, i.e., the “dominance relationship”, between this group and
otherk-tuple groups. The dominance test, when taking two groups
G1 andG2 as input, produces one of three possible outputs –G1

dominatesG2, G2 dominatesG1, or neither dominates the other.
A k-tuple group is askylinek-tuple group, orskyline groupin short
(without causing ambiguity), if and only if it is not dominated by
any otherk-tuple group inD.

More specifically, groups are compared by their aggregates.Each
group is associated with anaggregate vector, i.e., anm-dimensional
vector with thei-th element being an aggregate value ofAi over
all k tuples in the group. The aggregate vectors can be computed
by different aggregate functions. In this paper we focus on three
commonly used aggregate functions: SUM (i.e, AVG, since groups
are of equal size), MIN, and MAX. The aggregate vectors for two
groups are compared according to the traditional tuple dominance
relationship used in all existing work on skyline tuples. Such tra-
ditional tuple dominance relationship is defined accordingto cer-
tain application-specific preferences. In particular, such prefer-
ences are captured as a combination of total orders for all attributes,
where each total order is defined over (all possible values of) an at-
tribute, with “larger” values always preferred over “smaller” values.
Hence, an aggregate vectorv1 dominatesv2 if and only if every at-
tribute value ofv1 is either larger than or equal to the corresponding
value ofv2 according to the preference order andv1 is larger than
v2 on at least one attribute.

Table 1 depicts a 5-tuple, 2-attribute table which we shall use as
a running example throughout this section. Figure 1 depictsthe five
tuples on a 2-dimensional plane defined by the two attributes. We
consider the natural order of real numbers as the preferenceorder
for all attributes. For instance,t2 dominatest5 while neithert2 nor
t3 dominates each other. Table 2 shows a sample case of compar-
ing two 3-tuple groups for each aggregate function. Figure 1al-
so shows the symbols corresponding to MIN and MAX aggregate
vectors of skyline 2-tuple groups in the running example. For in-

stance, the skyline 2-tuple group under MAX function is {t1, t2},
with aggregate vector〈3, 3〉. The aggregate vectors of skyline 2-
tuple groups under MIN are〈2, 1〉 (for group {t3, t4}) and 〈0, 2〉
(for groups {t2, t4}, { t2, t5}, { t4, t5}).

A1 A2

t1 3 0
t2 0 3
t3 2 1
t4 2 2
t5 0 2

Table 1: Running Example

t2

t5 t4

t3

t1

tuple

MAX skyline

aggr vector

MIN skyline

aggr vector

Figure 1: Running Example in 2-d Space

Tuples SUM MAX MIN
G t2〈0, 3〉 t3〈2, 1〉 t4〈2, 2〉 〈4, 6〉 〈2, 3〉 〈0, 1〉
G′ t3〈2, 1〉 t4〈2, 2〉 t5〈0, 2〉 〈4, 5〉 〈2, 2〉 〈0, 1〉

Dominance Relationship G ≻ G′ G ≻ G′ G = G′

Table 2: Examples of aggregate-based comparison

4. FINDING SKYLINE GROUPS
In this section, we develop our main ideas for finding skyline

groups. We start by considering a brute-force approach which first
enumerates each possible combination ofk tuples in the input table,
computes the aggregate vector for each combination, and then in-
vokes a traditional skyline-tuple-search algorithm to findall skyline
groups. This approach has two main problems. One is its signif-
icant computational overhead, as the input size to the final step –
i.e., skyline tuple search – is

(

n

k

)

, which can be extremely large.
The other problem is actually on the seemingly natural strategy of
listing all skyline groups as the output. The problem here isthat, for
certain aggregate functions (e.g., MAX and MIN), even the output
size – i.e., the number of skyline groups produced – may be nev-
ertheless too large to explicitly compute and store. Such a large
output size not only leads to significant overhead in computing and
storing skyline groups, but also makes post-processing (e.g., rank-
ing and browsing of skyline groups) costly.

Another idea is to consider skyline tuples only. While seemingly
intuitive, this idea will not work correctly in general. In particular,
we have the following two observations:

1. A group solely consisting of skyline tuples maynot be a skyline
group. Consider groupG={t1, t2} in the running example. Note
that botht1 andt2 are skyline tuples. Nonetheless, with SUM
function, G is dominated byG′={t3, t4}, as SUM(G)=〈3, 3〉
while SUM(G′)=〈4, 3〉. As such,G is not on the skyline.

2. A group containing non-skyline tuples could be a skyline group,
even if there are skyline tuples which are not included in the
group. Again consider the running example, this time withG =
{t4, t5} and MIN function. Note thatt5 is not on the skyline as
it is dominated byt2 andt4. Nonetheless,G (with MIN(G) =
〈0, 2〉) is actually on the skyline, because the only other groups
which can reachA2 ≥ 2 in the aggregate vector are{t2, t4} and
{t2, t5}, both of which yield an aggregate vector of〈0, 2〉, the
same as MIN(G). Thus,G is on the skyline despite containing
a non-skyline tuple.

To address these challenges, we develop several techniques, name-
ly output compression, input pruning, andsearch space pruning.
We start with developing anoutput compressiontechnique that sig-
nificantly reduces the output size when the number of skylinegroup-
s is large, thereby enabling more efficient downstream processes
that consume the skyline groups. Then, we consider how to ef-
ficiently find skyline groups. In particular, we shall describe two
main ideas. One isinput pruning– i.e., filtering the input tuples to

significantly reduce the input size to the search of skyline group-
s. The other issearch space pruning– i.e., instead of enumerat-
ing each and everyk-tuple combination, we develop techniques to
quickly exclude from consideration a large number of combination-
s. Note that the two types of pruning techniques are transparent to
each other and therefore can be readily integrated.

4.1 Output Compression for MIN and MAX
Main Idea: A key observation driving our design of output com-
pression is that while the number of skyline groups may be large,
many of these skyline groups share the same aggregate vector. Thus,
our main idea for compressing skyline groups is to store not all sky-
line groups, but only the (much fewer) distinct skyline aggregate
vectors (in shortskyline vector) as well as one skyline group for
each skyline vector.

Among the three aggregate functions we consider in the paper,
i.e., SUM, MIN and MAX, the SUM function rarely, if ever, re-
quires output compression. In the rest of the paper, we shallfocus
on the problem of finding all skylinek-tuple groups for SUM, and
finding all distinct skyline vectors and their accompanying(sam-
ple) skyline groups for MIN and MAX. We use the term “skyline
search” to refer to the process in solving the problem.

Reconstructing all Skyline Groups for a Skyline Vector: While
the distinct skyline vectors and their accompanying (sample) sky-
line groups may suffice in many cases, a user may be willing to
spend time on investigating all groups equivalent to a particular
skyline vector, and to choose a group after factoring in her knowl-
edge and preference. Thus, we now discuss how one can recon-
struct all skyline groups from a given skyline vector, if required.

Consider MIN first. For a given MIN skyline vectorv, the pro-
cess is as simple as findingΩ(v), the set of all input tuples which
dominate or are equal tov. The reason is as follows. Given any
k-tuple subset ofΩ(v), its aggregate vector either dominates or is
equal tov, thus it must be a skyline group. On the other hand, any
group which contains a tuple outside ofΩ(v) must have an aggre-
gate vector dominated byv, and therefore cannot be in the skyline.
The time complexity of a linear scan process in findingΩ(v) is
O(n). GivenΩ(v), the only additional step needed is to enumerate
all k-tuple subsets ofΩ(v).

For MAX, interestingly, the problem is much harder. To under-
stand why, consider each tuple as a set consisting of all attributes
for which the tuple reaches the same value as a MAX skyline vec-
tor. The problem is now transformed to finding all combination
of k tuples such that the union of their corresponding sets is the
universal set of all attributes – i.e., finding all set coversof size
k. The NP-hardness of this problem directly follows from the
NP-completeness of SET-COVER, seemingly indicating that MAX
skyline groups should not be compressed.

Fortunately, despite of the theoretical intractability, finding all
skyline groups matching a MAX skyline vectorv is usually effi-
cient in practice. This is mainly because the number of tuples that
“hit” the MAX attribute values inv – i.e., the input size – is typical-
ly small. As such, even a brute-force enumeration can be efficient,
as demonstrated by experimental results in Section 5.

4.2 Input Pruning
We now consider the pruning of input to skyline group searches,

which is originally the set of alln tuples. An important observation
is that if a tuplet is dominated byk or more tuples in the original ta-
ble, then we can safely excludet from the input without influencing
the distinct skyline vectors found at the end. To understandwhy,
suppose that a skyline groupG contains a tuplet which is domi-
nated byh (h≥k) tuples. There is always an input tuplet′ which

dominatest and is not inG. Sincet′ dominatest, the number of
tuples which dominatet′ must be smaller thanh. Note that ift′ is
still dominated byk or more tuples, we can repeat this process until
finding t′ 6∈G that is dominated by less thank tuples. Now consider
the construction of another groupG′ by replacingt in G with t′.
For SUM, one can see thatG′ always dominatesG, contradicting
our assumption thatG is a skyline group. Thus, no skyline group
under SUM can contain any tuple dominated byk or more tuples.

For MIN and MAX, it is possible that the aggregate vectors of
the aboveG′ andG are exactly the same. Even in this case, we
can still safely excludet from the input without influencing the
distinct skyline vectors. If there are other tuples inG which are
dominated byk or more tuples, we can use the same process to
remove them all and finally reach a group that (1) features thesame
aggregate vector asG, and (2) has no tuple dominated byk or more
other tuples. Thus, we can safely remove all tuples with at leastk
dominators for all aggregate functions – i.e., SUM, MIN and MAX.

Another observation for input pruning is that, for MAX only,we
can safely exclude any non-skyline tuplet from the input without
influencing the skyline vectors. The reason can be explainedas
follows. Suppose that a skyline groupG contains a non-skyline
tuple t which is dominated by another skyline tuplet′. If t′ 6∈ G,
then we can replacet in G with t′ to achieve the same (skyline)
aggregate vector (becauseG is a skyline group). Ift′ ∈ G, we can
removet from G without changing the aggregate vector ofG. In
either way,t can be safely excluded from the input. By repeatedly
replacing or removing non-skyline tuples in the above way, we will
obtain a group of size at mostk that is formed solely by skyline
tuples.1 Padding the group with arbitrary additional tuples to reach
sizek will result in a group of the same aggregate vector asG.

4.3 Search Space Pruning: Anti-Monotonicity
Our principal idea for search space pruning is to find and lever-

age a number ofanti-monotonic propertiesfor skyline search, in
analogy to the Apriori algorithm for frequent itemset mining [1]. It
is important to note that the anti-monotonic property in theApriori
algorithm – i.e., every subset of a group “of interest” (e.g., a group
of frequent items or a skyline group) must also be “of interest” it-
self – does not hold for skyline search over SUM, MIN or MAX. In
fact, two examples in Section 3 can serve as proof by contradiction,
to demonstrate the inapplicability for SUM and MIN. Specifically,
for SUM, skyline2-tuple group{t3, t4} contains a non-skyline tu-
ple t3, i.e., a non-skyline1-tuple group. For MIN, skyline group
{t4, t5} contains a non-skyline tuplet5. For MAX, the inapplica-
bility can be easily observed from the fact that the set of alltuples
is always a skylinen-tuple group, while many subsets of it are not
on their corresponding skylines of equal group size.

4.3.1 Order-Specific Anti-Monotonic Property
Our first idea is to factor in an order of all tuples. To under-

stand how, consider a skylinek-tuple groupGk which violates the
Apriori property – i.e., a (k−1)-tuple subset of it,Gk−1 ⊆ Gk,
is not a skyline (k−1)-tuple group. We note for this case that
all (k−1)-tuple groups which dominateGk−1 must contain tuple
tk = Gk\Gk−1. To understand why, suppose that there exist-
s a (k−1)-tuple groupG′ which dominatesGk−1 but does not
contain tk. Then, G′ ∪ {tk} would always dominate or equal
Gk = Gk−1 ∪ {tk}, contradicting the skyline assumption forGk.

1Note that if the resulting group has size smaller thank, then it (and
thusG) reaches the maximum values on all attributes. If there are
fewer thank skyline tuples in the input, then we can immediately
conclude that any skylinek-tuple group must reach the maximum
values on all attributes.

One can see from this example that while a subset of a skyline
group may not be on the skyline for the entire input table, it is al-
ways a skyline group over a subset of the input table – in particular,
D\{tk} in the above example.

Definition 1 Order-Specific Property An aggregate functionF
satisfies theorder-specific anti-monotonic propertyif and only if
∀k, if ak-tuple groupGk with aggregate vectorv (i.e.,v = F(Gk))
is a skyline group, then for each tuplet in Gk, there must exist a
set ofk − 1 tuplesGk−1 ⊆ D with t 6∈ Gk−1, such that (1)Gk−1

is a skyline(k− 1)-tuple group over an input tableD\{t}, and (2)
Gk−1 ∪ {t} is a skylinek-tuple group over the original input table
D which satisfiesF(Gk−1 ∪ {t}) = v.

It may be puzzling where the “order” comes from – we note
that it actually lies on the way search-space pruning can be done
according to this anti-monotonic property: Consider an arbitrary
order of all tuples in the input table, say〈t1, . . . , tn〉. For anyr <

n, if we know that anh-tuple groupGh (h ≤ r) is not a skyline
group over{t1, . . . , tr}, then we can safely prune from the search
space allk-tuple groups whose intersection with{t1, . . . , tr} isGh

– a reduction of the search space size byO((n− r)k−h).

Theorem 1 SUM, MIN and MAX satisfy the order-specific anti-
monotonic property.

To prune based on this order-specific property, one has to com-
pute for everyh ∈ [k, n − k] the aggregate vectors of all skyline
1, 2, . . ., min(k, h)-tuple groups over the firsth tuples (according
to the order), because any of these groups may grow into a sky-
line k-tuple group when latter tuples (again, according to the order)
are brought into consideration. Given a largen, the order-specific
pruning process may incur a significant overhead. To addressthis,
we consider an order-free anti-monotonic property as follows.

4.3.2 Weak Candidate-Generation Property
The main idea is that, instead of requiringevery(k − 1)-tuple

subset of a skylinek-tuple group to be a skyline(k−1)-tuple group
(as in the Apriori property), we consider the following property
which only requiresat least onesubset to be on the skyline.

Definition 2 (Weak Candidate-Generation Property)An aggre-
gate functionF satisfies theweak candidate-generation property
if and only if, ∀k and for any aggregate vectorvk of a skylinek-
tuple group, there must exist an aggregate vectorvk−1 for a skyline
(k − 1)-tuple group, such that for any(k − 1)-tuple groupGk−1

which reachesvk−1 (i.e.,F(Gk−1) = vk−1), there must exist an
input tuplet 6∈ Gk−1 which makesGk−1 ∪ {t} a skylinek-tuple
group that reachesv (i.e.,F(Gk−1 ∪ {t}) = v).

An intuitive way to understand the definition is to consider the
case where every skyline group has a distinct aggregate vector.
In this case, the weak anti-monotonic property holds when every
skyline k-tuple group has at least one (k−1)-tuple subset being a
skyline (k−1)-tuple group. The property is clearly “weaker” than
the classic (Apriori) anti-monotonic property when being used for
pruning, in the sense that it allows more candidate sets to begener-
ated than directly (and mistakenly) applying the classic property.

Theorem 2 MIN and MAX satisfy the weak candidate-generation
property, while SUM does not satisfy the property.

5. EXPERIMENTS
In this section we provide a partial presentation of our exper-

imental results. We refer interested readers to the extended ver-
sion [11] for more details and results.

Datasets: We collected 512 tuples of NBA players who had
played in the 2009 regular season. The tuple of each player has

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

1 3 5 7

E
xe

cu
ti

o
n

 T
im

e

Number of Tuples per Group

BASELINE
OSM

(a) n = 300

 1

 10

 100

 1000

 10000

100 200 300 400 500

E
xe

cu
ti

o
n

 T
im

e

Number of Tuples

BASELINE
OSM

(b) k = 5

 10
 100

 1000
 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09

1 3 5 7

T
o

ta
l C

an
d

id
at

e
G

ro
u

p
s

Number of Tuples per Group

BASELINE
OSM

(c) n = 300

 10000

 100000

 1e+06

 1e+07

 1e+08

100 200 300 400 500

T
o

ta
l C

an
d

id
at

e
G

ro
u

p
s

Number of Tuples

BASELINE
OSM

(d) k = 5
Figure 2: (a)-(b): Execution time (in seconds, logarithmicscale) and (c)-(d): number of candidate groups (logarithmic scale), SUM

5 performance statistics – points per game, rebounds per game, as-
sists per game, steals per game, and blocks per game. Playersand
groups of players are compared by these statistics and theiraggre-
gates. To study the scalability of our methods, we also experiment-
ed with synthetic datasets produced by the data generator in[4].
The datasets have 1 to 10 million tuples, on 5 attributes. Theda-
ta generator allows us to produce datasets where the attributes are
correlated, independent, and anti-correlated.

Aggregate Functions and Methods Compared: We investi-
gated the performance of two algorithms based on order-specific
property (OSM) and weak candidate-generation property (WCM),
respectively. We also compared these methods with the baseline
method (BASELINE), which is a direct adaptation of the general
framework in [14] for our problem (cf. Section 2). We executed
these methods for aggregate functions SUM, MIN, and MAX. Due
to space limitations, we will not discuss the results from WCM.

Size of Output under Different Functions: Table 3 shows, for
differentn (number of tuples, i.e., dataset size),k (number of tuples
per group, i.e., group size), and aggregate functions, the number of
all possible groups (G), the number of all skyline groups (S), and
the number of distinct aggregate vectors (V) for the skylinegroups.
The table is for correlated synthetic datasets. It can be seen that
G quickly becomes very large, which indicates that any exhaustive
method will suffer due to the large space of possible answers.

Among the 3 functions, in general SUM has the largest number
of skyline vectors and MAX results in the smallest output size. This
is due to the intrinsic characteristics of these functions.In comput-
ing the aggregate vector for a group, SUM reflects the strength of
all group members on each dimension. Hence it is more difficult
for a group to dominate or equal to another group on every dimen-
sion. In contrast, MIN (MAX) chooses the lowest (highest) value
among group members on each dimension. Hence skyline groups
are formed by relatively small number of extremal tuples.

On the other hand, if we compare the sizes of all skyline groups
including the equivalent ones, it is rare under SUM to have multiple
skyline groups sharing the same aggregate vector. MAX results in
much more equivalent groups.

n
k = 2 k = 4 k = 6

G S V G S V G S V

1 M
SUM

4×10
11

247 247
4×10

22

1654 1654
1×10

33

6146 6146
MIN 187 141 1914 436 12816 870
MAX 368 220 147 73 2.9 M 1

4 M
SUM

8×10
12

219 219
1×10

25

1610 1610
6×10

36

7482 7482
MIN 179 131 2182 461 17784 1148
MAX 396 274 164 78 11 M 1

7 M
SUM

2×10
13

221 221
1×10

26

1374 1374
2×10

38

5825 5825
MIN 188 134 2193 455 16347 1002
MAX 552 323 354 90 55 M 1

10 M
SUM

4×10
13

210 210
4×10

26

1300 1300
1×10

39

4487 4487
MIN 183 133 2130 450 15442 913
MAX 402 224 968 63 0.8 B 1

Table 3: Number of all groups (G), skyline groups (S), and distinct
vectors for skyline groups (V), under differentn, k, and functions.
Correlated synthetic dataset. M: million, B: billion.

Comparison of Various Methods: Figure 2 shows the execu-
tion time and number of generated candidate groups, by BASE-
LINE/OSM for SUM, over the NBA dataset. In sub-figure (a) and
(c), we fix the size of dataset (n) to 300 tuples and vary group
size (k). In sub-figure (b) and (d), we fix the group size (k=5) and
vary dataset size. We observed that OSM performed substantially
(often orders of magnitude in execution time) better than BASE-
LINE. Without the order-specific pruning properties, BASELINE
produced much more candidate groups than OSM.

Acknowledgments: The work of Li is partially supported by NS-
F grants 1018865, 1117369, and 2011, 2012 HP Labs Innovation
Research Award. The work of Zhang is supported in part by NSF
under grants 0852674, 0915834, and 1117297. The work of Das
is partially supported by NSF grants 0812601, 0915834, 1018865,
a NHARP grant from the Texas Higher Education Coordinating
Board, and grants from Microsoft Research and Nokia Research.
Any opinions, findings, and conclusions or recommendationsex-
pressed in this publication are those of the author(s) and donot
necessarily reflect the views of the funding agencies.

6. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules in large databases. InVLDB, 1994.
[2] A. Anagnostopoulos, L. Becchetti, C. Castillo, A. Gionis,

and S. Leonardi. Power in unity: forming teams in
large-scale community systems. InCIKM, 2010.

[3] S. Antony, P. Wu, D. Agrawal, and A. El Abbadi. Moolap:
Towards multi-objective olap. InICDE, 2008.

[4] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline
operator. InICDE, 2001.

[5] S. Chaudhuri, N. Dalvi, and R. Kaushik. Robust cardinality
and cost estimation for skyline operator. InICDE, 2006.

[6] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with
presorting. InICDE, 2003.

[7] P. Godfrey, R. Shipley, and J. Gryz. Maximal vector
computation in large data sets. InVLDB, 2005.

[8] H.T.Kung, F.Luccio, and F.P.Preparata. On finding the
maxima of a set of vectors.JACM, 22(4), 1975.

[9] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the
sky: an online algorithm for skyline queries. InVLDB, 2002.

[10] T. Lappas, K. Liu, and E. Terzi. Finding a team of expertsin
social networks. InKDD, 2009.

[11] C. Li, N. Zhang, N. Hassan, S. Rajasekaran, and G. Das. On
skyline groups (extended version). Technical report, CSE
Department, University of Texas at Arlington, August 2012.

[12] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive
skyline computation in database systems.TODS, 2005.

[13] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive
skyline computation. InVLDB, 2001.

[14] X. Zhang and J. Chomicki. Preference queries over sets.In
ICDE, 2011.

